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Abstract. With the rapid growth of unstructured data and increased attention to the privacy of personally identifiable in-
formation (PII), the tasks of automatic recognition and data protection are becoming increasingly relevant. This paper provides
a comparative analysis of machine learning methods for recognizing PII in unstructured texts. The study considers rule-based
methods, classification algorithms (SVM, random forests), and deep learning models (neural networks, transformers). The
effectiveness of the models is assessed using metrics such as accuracy, recall, and F1-measures. The experimental results show
that deep learning models such as BERT demonstrate high accuracy and recall, outperforming traditional methods. However,
they require significant computing resources and a large amount of training data. The article discusses the advantages and
disadvantages of each approach, and offers recommendations for choosing a model depending on the specifics of the task and
available resources. Beyond technical advances, the study highlights the value creation provided by effective PII recognition,
including improved data security, automated compliance, and operational efficiency.
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1. Introduction rithmic vulnerabilities, biases, and the potential misuse of
collected data [8].

This paper presents a comparative study of machine
learning methods used for PII recognition in unstructured
texts. The primary goal is to identify the most effective and
accurate approaches and to examine the advantages and
disadvantages of various methodologies, including rule-
based linguistic analysis, traditional ML algorithms, and
modern neural networks [9].

In the modern era of big data and the widespread use of
Artificial Intelligence (Al) and Machine Learning (ML),
there is growing attention to the automatic detection of Per-
sonally Identifiable Information (PII) in unstructured texts
[1]. As the volume of digital information continues to in-
crease, various organizations and businesses process massive
amounts of data, a substantial portion of which may contain
sensitive information, such as names, addresses, identifica-
tion numbers, and other confidential data [2].

Effective and accurate PII recognition is vital for ensur-
ing data security, meeting regulatory requirements (e.g., \/ y
GDPR or HIPAA), and mitigating risks of data breaches [3].

At the same time, automating the process of text analysis and E-mails \ /

filtering reduces operational costs and improves workflow n
efficiency, minimizing the need for manual document review

[4]. Rkl

However, the automatic identification of PII in unstruc-
tured sources faces several challenges. First, the diversity of

text formats, styles, and languages calls for sophisticated / Unstructured g |
Natural Language Processing (NLP) algorithms capable of < /> - 2 i
correctly interpreting context [5]. Second, there is an in- - 3 t
creased risk of false positives, in which algorithms mistaken- —_— = [

ly classify harmless data as personal, leading to excessive SZ:;"‘ Company Reports
blocking or anonymization of content [6].
Moreover, with the tightening of data protection regula- Figure 1. Unstructured text data sources
tions (e.g., GDPR) and growing public attention to privacy
concerns, system developers must consider both ethical and Conducting a comparative analysis of these methods is of

security aspects [7]. While ML-driven PII recognition can  great practical importance for companies and organizations
significantly enhance data security and the efficiency of text  handling sensitive data, as it enables them to select the most
data analysis, it also introduces new risks related to algo-  suitable solutions for specific business requirements and
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existing infrastructures [10]. Furthermore, this research con-
tributes to the continued advancement of NLP and ML tech-
nologies, promoting the development of more precise, faster,
and safer algorithms for processing personal data [11].

However, as with any technology that manages sensitive
information, developing and implementing PII recognition
systems requires close attention to issues of privacy, trans-
parency, and fairness [12]. It is essential to address ethical
dilemmas arising from data collection and automatic pro-
cessing, as well as ensure the protection of analysis outcomes
against unauthorized access [13].

1.1. Research Contribution

An automatic PIl recognition system for unstructured
texts, based on machine learning methods, can significantly
contribute to multiple research domains:

- Enhancing NLP and entity recognition algorithms. The
development of ML algorithms, including deep neural net-
works, can lead to improved accuracy in extracting personal
information through consideration of linguistic context and
syntactic nuances [14].

- Optimizing corporate processes and ensuring regulatory
compliance. Automating PII detection facilitates faster and
more reliable identification of critical information, simplify-
ing adherence to GDPR, HIPAA, and other regulations [15].

- Developing ethical and secure data processing ap-
proaches. As debates about privacy and transparency in ML
systems intensify, this research drives innovation in secure
data storage solutions and strategies to prevent misuse [16].

- Addressing algorithmic bias. Analyzing and mitigating
biases in PII extraction from diverse text sources is critical
for ensuring fair and generalized ML applications [17].

Therefore, this work constitutes an important step in ad-
vancing personal data recognition technologies, combining
theoretical insights with practical relevance for information
security experts, ML system developers, and NLP research-
ers.

1.2. Paper Organization

The remainder of this paper is structured as follows:

- Section 2. Problem Identification and Significance dis-
cusses the key challenges of existing PIl detection systems in
unstructured texts and emphasizes the importance of further
research.

- Section 3. Proposed Plan outlines the proposed solution
based on ML algorithms, highlighting how they can provide
faster and more accurate PII recognition.

- Section 4. Machine Learning Methods for PIl Recogni-
tion reviews various approaches for identifying personal in-
formation, including rule-based linguistic methods and modern
deep learning models, supported by practical examples.

- Section 5. Experimental Results and Setup details the
experimental methodology, datasets, and comparative analy-
sis findings, shedding light on the strengths and weaknesses
of each method.

- Section 6. Conclusion summarizes the key outcomes
and contributions of the study, offering recommendations for
future research on improving PIl detection in unstructured
texts [18].

In addressing a broad range of technological, legal, ethi-
cal, and practical aspects, this paper provides a comprehen-
sive perspective on the relevance and potential directions for
ongoing development in PII recognition systems [19].
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2. Materials and methods

2.1. Problem Identification and Significance

High-profile data breaches and regulatory pressures have
intensified the need for effective, automated solutions to
detect Personally Identifiable Information (PII) in unstruc-
tured texts. One prominent case occurred in 2017, when the
credit-reporting agency Equifax suffered a cyberattack that
exposed the personal data of over 147 million consumers,
including names, Social Security numbers, and birth dates
[20]. This breach not only demonstrated the vulnerabilities in
data storage and processing but also highlighted the severe
consequences both financial and reputational of insufficient
PI1I protection.

Subsequent incidents, such as the 2018 Marriott Interna-
tional breach that compromised the records of roughly 500
million guests, have underscored the persistent challenges of
safeguarding confidential information in large-scale data-
bases [21]. These cases collectively illustrate the increasing
volume and complexity of unstructured text sources (e.g.,
emails, logs, documents, and social media posts) where PII
can appear in unpredictable formats. Such heterogeneity
complicates the process of accurate data extraction, leading
to risks of inaccurate redaction or overlooked sensitive de-
tails.

Beyond the immediate financial impact IBM estimated
that the global average cost of a data breach reached USD
4.35 million in 2022 [22] organizations also face mounting
legal obligations to comply with regulations like GDPR and
HIPAA. These regulations enforce stringent requirements on
how sensitive data must be identified, protected, and handled
[3]. However, manual review of large text corpora is time-
consuming, error-prone, and infeasible at scale, prompting a
shift toward automated Machine Learning (ML) methods.
Traditional keyword-based filters can produce high false-
positive rates, blocking legitimate content and degrading
operational efficiency [6].

A major technical challenge lies in adapting ML-driven
PIl detection to diverse linguistic contexts. Real-world text
data often contain colloquialisms, abbreviations, multilingual
inputs, and context-dependent cues that necessitate robust
Natural Language Processing (NLP) algorithms [5]. Even
advanced deep learning approaches can be susceptible to
errors if their training datasets lack coverage of specific do-
main terminologies or minority languages. This creates sub-
stantial barriers to generalization, where a model effectively
trained on one data distribution struggles to maintain accura-
Cy on new, unseen text sources [9].

Equally pressing are ethical and fairness considerations.
Biases in training data or model architecture can inadvertent-
ly lead to overlooking or misclassifying certain de-
mographics, with significant consequences for privacy and
compliance [17]. Over-sanitization of content may obstruct
legitimate operations by excessively redacting or blocking
important details, whereas under-sanitization can expose
organizations to legal liability. These scenarios underscore
the delicate balance between precision and recall in automat-
ed Pl detection pipelines.

Given the sheer scale and diversity of textual data in
modern information systems, the development of robust
machine learning methods for PII recognition becomes im-
perative. Accurate, reliable, and ethically responsible algo-
rithms can reduce manual effort, enhance security, and facili-
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tate compliance with increasingly strict regulations. Moreo-
ver, refining such models drives broader innovation in NLP,
contributing novel techniques for entity extraction, domain
adaptation, and bias mitigation. The ongoing research in this
field, therefore, aims not just at curbing data breaches but
also at shaping how organizations manage the privacy of
individuals in a rapidly evolving digital landscape.

2.2. Proposed Algorithms

Effective Pl (Personally Identifiable Information) recog-
nition in unstructured texts requires a combination of robust
Natural Language Processing (NLP), machine learning algo-
rithms, and careful system design. Borrowing from best
practices in entity recognition, text classification, and infor-
mation retrieval [5,9], this section outlines two conceptual
algorithms for PII detection and risk-based classification.
These proposed methods aim to ensure accurate, scalable,
and ethical processing of sensitive information in diverse text
corpora.

2.2.1. P11 Detection Workflow

A typical PII detection pipeline consists of multiple stag-
es: text ingestion, preprocessing, named entity recognition,
confidence scoring, and action (e.g., redaction, alerting).
Figure 2 illustrates an example system architecture.

Unstructured text sources

A

1. Preprocessing &
Tokenization

A —4

2. Named Entity Recognition (NER)
(ML or rule-based methods)

3. Confidence Scoring & Filtering
(Thresholds, false positives)

Masking, Alert)

4. Action Module (Redaction, |

Figure 2. A schematic representation of the PII detection sys-
tem

In this diagram, raw text data is first preprocessed to han-
dle formatting variations and reduce noise (e.g., removing
HTML tags, special characters). Next, a Named Entity
Recognition (NER) model identifies potential Pll tokens,
such as names, addresses, and ID numbers [5]. The model
assigns a confidence score to each detected entity, balancing
false positives against false negatives [6]. Based on configu-
rable thresholds, certain flagged entities are either auto-
redacted, masked, or queued for human review [4,10].
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Algorithm 1 Basic PII Detection Process
1. Initialization:
{T:Unstructured text corpus; M:ML-
based NER model; A:Action or Redaction Module;
0:Confidence threshold}
Input:
{T.M,A,0}
Output:
{Processed text with masked or redacted PI1}
Set {T,M,A,0}
For each document deT:
5.1. Preprocess d(tokenization, normalization, re-
moval of noise).
5.2. Apply M to identify potential PIl tokens in d.
5.3. For each detected token t with confidence score
SSS:
If s>6 then
Use A to redact or mask t.
Else
Ignore or log t as low-confidence detection.
End if
End For
Return the processed documents or text output.

B

Sk

This algorithm provides a systematic approach for identi-
fying personally identifiable information (PII) within a cor-
pus of unstructured texts. It begins by initializing key com-
ponents namely, the unstructured text corpus, a trained
named entity recognition (NER) model, a mechanism for
redacting or masking detected entities, and a configurable
confidence threshold. During execution, each document is
preprocessed to remove noise and convert it into a consistent
format for the NER model. The model then scans the docu-
ment to locate potential PIl tokens (e.g., names, emails, so-
cial security numbers), assigning a confidence score to each
detection.

Any entity exceeding the set confidence threshold is sub-
ject to redaction or masking, ensuring that sensitive infor-
mation is not displayed in the final output. Conversely, to-
kens that fall below the threshold can be logged for further
manual review or dismissed, depending on organizational
requirements. In large-scale deployments, this loop continues
for all documents in the corpus, allowing for automatic, high-
volume PII detection. By adjusting the threshold, an organi-
zation can tune the trade-off between false positives and false
negatives. This modular design also enables straightforward
updates or expansions, such as incorporating new entity
types or integrating more advanced NLP models.

This approach ensures that only tokens matching or sur-
passing a set confidence level [9] are redacted, minimizing
unnecessary blocking of legitimate content. By iterating
through documents in the corpus, the system can handle vast
datasets automatically and reliably.

2.3. Risk-Based Classification of PII

Once potential PIl is detected, organizations often require
risk categorization to prioritize handling. For instance, Social
Security Numbers or financial credentials may warrant tight-
er scrutiny than phone numbers [14,15]. Algorithm 2 intro-
duces a secondary classification mechanism to score and
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categorize each detected entity, enabling adaptive responses
such as heightened security review for high-risk data.

Algorithm 2 Risk-Based Classification of Detected PII

1. Initialization:
{E:List of detected PII entities; C:Classification Mo
del; R:Risk categories; a:Risk thresholds}
2. Input:
{E,C,R,a}
3. Output:
{Risk-labeled entities and corresponding actions}
4. Set {E,C,R,a}
5. For each entity e€E:
5.1. Extract features for classification (e.g., entity
type, context).
5.2. Compute risk score r=C(e) (e.g., 0-1, with 1 =
highest risk).
53.1If > Ehigh then
Label e as High Risk and trigger the associated
high-risk action (e.g., strict redaction, audit).
Else if >t meginm then
Label e as Medium Risk and apply moderate
protective measures.
Else
Label e as Low Risk with minimal intervention.
End if
6. End For
7. Return the risk-labeled entities along with recom-

mended actions.

After the initial detection of PII, Algorithm 2 applies a
secondary classification step to label each identified entity
according to its risk level. The process starts by gathering the
list of detected tokens (or phrases) from the first algorithm. A
dedicated classification model (e.g., a supervised or rule-
based system) then computes a risk score for each entity,
considering factors such as entity type (e.g., financial data vs.
basic contact information), the broader context in which it
appears, and any domain-specific rules (e.g., compliance
requirements in healthcare or finance).

Based on configurable thresholds, each entity is catego-
rized into tiers such as High Risk, Medium Risk, or Low
Risk. The outcome of this classification determines the ac-
tions to be taken. For instance, High-Risk data might trigger
an immediate alert or mandatory encryption, while Low-Risk
information may only warrant minimal masking or logging.
This tiered approach helps organizations allocate security
resources more effectively, focusing human attention on the
entities most likely to result in privacy breaches or regulatory
violations. The classification model can be periodically re-
trained or updated with new policies and domain knowledge,
making it adaptable to evolving privacy regulations and
emerging data types.

This classification step reflects a best-practice approach
recommended by many data protection guidelines [2,3]. By
categorizing PII into different risk levels, organizations can
allocate resources more efficiently, focusing manual reviews
on the most sensitive or potentially harmful data [15,16].

2.4. Validation of P11 Detection System Processes

2.4.1. The Transformative Impact of ML-Driven PII
Detection
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Hypothesis 1: Machine Learning (ML) techniques for PlI
recognition can fundamentally reshape data privacy and
handling strategies, yet they also demand rigorous oversight
to address transparency and compliance challenges.

Lemma 1: ML-based PIl detection achieves significant
accuracy when identifying sensitive information in large or
heterogeneous text datasets.

Proof 1: Empirical studies have consistently shown that
advanced named entity recognition and deep learning ap-
proaches attain high precision in detecting personal data
(e.g., names, social security numbers, or email addresses)
[23]. For example, a real-time system discussed at the 2021
IEEE International Conference on Big Data demonstrated its
ability to handle diverse text formats while maintaining effi-
ciency and reliability. These results underscore ML’s poten-
tial to automate the identification of privacy-sensitive tokens
across large volumes of unstructured data.

Corollary 1: Although ML solutions provide scalability
and cost-effectiveness, they also introduce vulnerabilities,
including possible over-reliance on automated decisions and
limited interpretability, underscoring the need for proactive
governance.

Definition 1: ML-based PII detection entails deploying
models trained on annotated corpora to classify or extract
tokens containing personal information. This process typical-
ly involves text preprocessing, model inference, and redac-
tion or masking actions that comply with organizational
policies and legal standards.

Theorem 1: Responsible deployment of these automated
tools requires careful consideration of user privacy rights,
legal obligations, and potential model biases.

Proof of Theorem 1: By virtue of scanning large textual
corpora, ML-driven PII detection systems inherently process
sensitive user data. They must align with regulations such as
the General Data Protection Regulation (GDPR) [3] and
incorporate measures for data minimization, role-based ac-
cess, and auditability. Inadequate controls can lead to unau-
thorized disclosure or disproportionate surveillance, thereby
eroding trust in digital services. Hence, organizations must
implement ethical and legal safeguards, along with transpar-
ent documentation of model usage and performance, to en-
sure responsible data stewardship.

2.4.2. Reducing Bias and Strengthening Ethical Compli-
ance

Hypothesis 2: Mitigating biases and proactively address-
ing ethical pitfalls are vital to ensuring fair, accurate, and
socially acceptable ML-driven PII recognition.

Lemma 2: Automated detection models are susceptible
to bias when their training data or evaluation metrics do not
account for the diverse languages, social contexts, and do-
main terminologies present in real-world text.

Proof of Lemma 2: Biases can manifest if the model sys-
tematically overestimates PIl presence in certain dialects
(leading to excessive false positives) or fails to detect it in
less-represented contexts. A 2022 survey on scalable, priva-
cy-preserving data processing [25] highlights how language
patterns vary significantly, causing performance gaps when
models trained primarily on one demographic are applied
elsewhere. Such biases may result in inconsistent redaction
or inadvertent exposure of sensitive tokens.

Corollary 2: Institutions deploying these systems must
conduct continuous performance audits, seeking to identify
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and correct skewed outcomes through balanced datasets and
model refinement.

Definition 2: Bias in Pl detection refers to systematic er-
rors that over- or under-identify private data for particular
user groups, content domains, or linguistic styles, potentially
undermining privacy guarantees and equitable treatment.

Theorem 2: Effective bias mitigation in ML-based PII
detection not only minimizes harm but also enhances trust-
worthiness and compliance with ethical and legal frame-
works.

Proof of Theorem 2: When organizations implement
best practices such as routine evaluations on varied text sets,
active learning strategies to incorporate underrepresented
samples, and explainability techniques model reliability
improves. These steps reduce the risk of unintentional data
leaks and violations of privacy laws [16]. Ultimately, fair,
transparent, and adaptable PIl detection pipelines reinforce
users’ confidence, fulfill regulatory requirements, and boost
the social acceptability of large-scale data analytics.

2.5. Approaches for PII Detection

Identifying personally identifiable information (PII) in
unstructured texts involves multiple strategies, each with
unique benefits and limitations [9,23]. Below are seven
commonly used methods, ranging from simple rule-based
approaches to advanced deep learning frameworks. Much
like Eigenface-based PCA in face recognition, these tech-
niques aim to reduce the dimensionality of raw textual data
or highlight key patterns for robust classification and extrac-
tion of sensitive content.

2.5.1. Rule-Based (Regex) Method

The rule-based (regex) method applies predefined tex-
tual patterns to detect personally identifiable information
(P1D) in unstructured text, analogous to how the Eigenface
approach uses principal components to uncover dominant
features in facial images. Instead of identifying directions of
maximum variance in images, regex-based rules identify
string formats that commonly represent sensitive data such as
email addresses, phone numbers, or social security numbers
[2].

A typical workflow begins with text preprocessing,
where punctuation and special characters that might disrupt
pattern matching are removed or standardized. Afterward,
each token is compared against a curated set of regular ex-
pressions that capture known PII formats. For example, a
simplified pattern for email detection might be:

Regex_email="[A-Za-z0-9._%+-]+@[A-Za-20-9.-]+.[A-Za-
21{2.}% 1)

Here, the characters [A-Za-z0-9.%+-] represent accepta-
ble username components, followed by the @ symbol, a
domain name, and a top-level domain of length two or more.
Real-world applications often employ more complex expres-
sions to handle edge cases or different email conventions
[26].

To illustrate this approach, suppose we have a collection
of N text files, each containing user-provided responses with
potential PIl. We can represent each file as a sequence of
tokens {t1,t2,...,tm}. Our task is to scan these tokens and
flag those that match known PII formats. Let us define a
function M(t) that returns 1 if a token ttt matches any regex
in our rule set and 0 otherwise:
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1
M(t) = {0 if t matches regex for Pll,otherwise (2)

If M(ti))=1, the token £; is likely to represent sensitive data
e.g., an email address, a phone number, or an ID. We can
then either mask this token (e.g., replacing it with
«[REDACTED]») or log it for further manual review [4].

For instance, assume we have 100 text documents con-
taining user information, each up to 500 words in length. We
initially remove extraneous punctuation, convert text to low-
ercase, and split everything into whitespace-delimited tokens.
As we process each token, the email regex in Equation (1)
captures strings like «jsmith@example.comy but skips ran-
dom alphanumeric text that does not match the email format.
This process yields a set of flagged tokens representing po-
tential PII.

Much like Eigenface-based dimensionality reduction, re-
gex-based detection streamlines textual data scanning by
focusing on explicit patterns. However, it lacks adaptability
to complex or unstructured scenarios that deviate from stand-
ard formats. In addition, purely rule-based methods may
produce false positives if the text contains strings that super-
ficially resemble P1I. Consequently, some organizations pair
regex detection with more advanced methods (e.g., machine
learning—based classification) to achieve higher accuracy and
contextual understanding [16].

Despite these limitations, rule-based regex detection re-
mains a fast and transparent baseline for PII recognition,
offering a solid starting point for many compliance-driven or
resource-constrained environments.

2.6. Dictionary and Keyword Matching

Dictionary and keyword matching serve as a straightfor-
ward technique for detecting personally identifiable infor-
mation (PIl) by comparing text tokens to a predefined vo-
cabulary of sensitive terms. This process resembles how
certain facial recognition methods rely on stored facial fea-
tures or templates to verify identities, but here the templates
are human-readable keywords or domain-specific phrases.

In this approach, a lexicon (or dictionary) is compiled
with entries representing typical PIl markers. Examples
might include recognizable substrings («DOBy», «SSNy,
«passport»), personal name lists, or relevant technical terms
(«CustomerID», «RecordNumber»). Once the dictionary D is
established, each token in a document is examined to see if it
matches (partially or fully) any entry. Consider the following
simplified expression:

1
match(t) = {0 if teD, otherwise 3)

Here, ttt represents a text token (e.g., «patientlDy,
«johny, or «accountNo»), and D contains items that indicate
potential personal data. For instance, «john» could flag a
personal name if it appears in the dictionary. In practice,
modern dictionary-based systems often incorporate fuzzy
matching or partial string matching to handle variations in
spelling and capitalization [2].

Suppose we have a corpus of N user feedback forms,
each containing free-text fields where users may disclose
personal information. We start by curating a dictionary of
size |D| = 200, comprising common given names, ID labels,
and sensitive medical or financial terms. Then, we scan each
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form token by token against D. If a token matches, we classi-
fy it as likely PII and take actions such as masking, redact-
ing, or logging for manual verification.

As an example, assume a user’s message reads: «Hi, my
name is John Smith, and my customerID is 12345». Upon
tokenizing, the string «John» (or «johny») may be found in the
name dictionary, and «customerID» may match a technical
field label. Both matches would be flagged for further priva-
cy handling [16].

A key benefit of dictionary/keyword matching is its sim-
plicity. Non-technical staff can update the lexicon to reflect
emerging PIl formats (e.g., new ID types). However, this
method also risks false positives, particularly when diction-
ary terms appear in non-sensitive contexts (e.g., «Jordan» as
a country name rather than a personal name). Similarly, it
may miss domain-specific nuances if the dictionary is not
comprehensive. Consequently, while this strategy can be
highly interpretable and fast, many systems combine diction-
ary matching with more adaptive techniques like machine
learning to improve overall detection accuracy [2, 4].

Despite these limitations, dictionary and keyword match-
ing remains an effective baseline for organizations seeking a
transparent, easily modifiable solution to quickly locate ob-
vious instances of personal data in unstructured text [15].

2.7. Statistical (Heuristic) Models

Statistical or heuristic approaches to PII detection differ
from purely rule-based methods by incorporating probabilis-
tic reasoning and learned patterns of token usage. Much like
dimension-reduction techniques in face recognition (e.g.,
PCA identifying areas of maximal variance), a heuristic
model explores frequency distributions and contextual indi-
cators to estimate whether a given token is likely to be per-
sonal data [6].

A common example involves a Bayesian scheme in
which each token www is assigned a probability P(PII |w).
This probability is derived by combining the prior likelihood
of encountering a PIl token with the observed occurrence of
www in labeled PII contexts. One simplified version of this
formulation is:

P(w|PI1)xP(PII)

P(PII |w) = o)

®)

Here, P(PIl |w) measures how frequently token www

appears in Pll-labeled text segments (e.g., user IDs, social
security numbers), while P(PII) represents the overall preva-

lence of personal data in the corpus [16]. The denominator
P(w) serves as a normalizing term to ensure the resulting

probability is between 0 and 1.

To apply this model, one typically collects a labeled da-
taset of documents, marking which tokens correspond to
personal data. By comparing the frequency of each token in
PII vs. non-Pll contexts, the system learns how strongly any
given string might suggest sensitive information. Suppose we
have N user logs, each containing addresses, phone numbers,
or free-form personal descriptions. After preprocessing, the
model calculates P(PII |w) for each unique token based on
its occurrence patterns. During inference, if this probability

exceeds a chosen threshold (e.g., 0.7), the token is flagged
for redaction or further inspection [2].
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As a practical illustration, imagine a chatbot dataset in
which phone-like numeric strings frequently appear after the
words «call me at». Over time, the statistical approach rec-
ognizes that sequences resembling «(555) 123-4567» are
strongly correlated with Pl and assigns them high probabili-
ties. This contrasts with purely regex-based scanning, which
might miss atypical phone formats or mislabeled numeric
tokens [27].

Despite their adaptability, heuristic methods can still suf-
fer from false positives if limited contextual cues cause the
model to overestimate certain token patterns. Moreover,
these models typically assume independence between tokens,
which is not always realistic in highly variable text. Conse-
quently, many organizations combine statistical models with
more context-aware algorithms like Conditional Random
Fields or transformer-based networks to enhance detection
accuracy. Nonetheless, as an intermediate approach between
rigid pattern matching and fully trained machine learning,
statistical (heuristic) models provide flexibility and relatively
low computational overhead, making them suitable for nu-
merous real-world P11 detection tasks [16].

2.8. Conditional Random Fields (CRF)

Conditional Random Fields (CRFs) provide a sequence-
aware approach to identifying personally identifiable infor-
mation (PII) in text, much like how certain face recognition
techniques account for the spatial arrangement of facial fea-
tures rather than treating each pixel independently. Instead of
isolating each token, CRFs analyze neighboring tokens and
label transitions, enabling more nuanced PII detection [5].

CRFs are trained on labeled sequences of tokens, where
each token is assigned a category (e.g., NAME, PHONE,
ADDRESS, or 0 for non-PIl). Formally, given a sequence of
tokens x=(x1, x2, ..., xn) and a corresponding label sequence
y=(yl, y2, ..., yn), a linear-chain CRF models:

P(y | x) o exp(ZiLo X A fic (Vir Y1 —1 x,1)) (6)

where each fy is a feature function that may look at the
current token x;, its neighbors (xi.1), (Xi+1), dictionary match-
es, or even preceding labels (yi.1). The weights 4, are

learned so that the model yields high probabilities for correct
label sequences.

A typical preprocessing stage involves tokenizing the text
and deriving a set of features per token, such as:

o Lexical cues: whether the token is alphabetic, numeric,
or mixed.

o Contextual signals: if the token is preceded by «Name»:
or «<DOB».

o Dictionary matches: does the token appear in a special-
ized dictionary of personal names or ID terms?

Once trained, the CRF uses these feature interactions to
assign labels more contextually. For example, consider the
sentence: «My phone is 555-123-4567». If the CRF learns
that numeric tokens often follow the word «phoney, it will be
more confident in labeling «555-123-4567» as PHONE ra-
ther than non-PIl. This sequence-based reasoning often
yields fewer misclassifications than methods that handle
tokens in isolation [16].

To illustrate, imagine a dataset of 5,000 medical tran-
scripts where each transcript might contain names, addresses,
and patient IDs scattered throughout. A CRF can learn that
certain numeric patterns frequently appear after «PatientID:»
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and thus, label them accordingly. By capturing transitions
(e.g., from NAME to ID labels), the model refines its under-
standing of how tokens chain together in PIl contexts.

Although CRFs require annotated training data and more
computational resources than simple regex scanning, they
often produce higher accuracy in scenarios where the sur-
rounding text or label dependencies help to clarify ambigu-
ous tokens. Consequently, CRFs are a robust choice for or-
ganizations handling large, unstructured text collections
where PII can appear in diverse formats [27].

2.9. Transformer-Based (e.g., BERT) Model

Transformer-based models, such as BERT (Bidirectional
Encoder Representations from Transformers), represent a
state-of-the-art approach to detecting personally identifiable
information (PII) in unstructured text. Much like advanced
face recognition methods leverage deep convolutional net-
works to capture intricate visual patterns, transformers apply
self-attention mechanisms to uncover long-range dependen-
cies in language [14].

These models are typically pre-trained on massive corpo-
ra to learn contextual embeddings, meaning each token in a
sentence is informed by the surrounding words. During fine-
tuning for PII detection, an additional output layer is added
on top of the transformer. This layer classifies each token
into categories (e.g., NAME, EMAIL, ID_NUMBER, or O
for non-PIl). Formally, if x denotes a tokenized sequence
and h; the hidden vector for the i-th token, the model com-
putes:

y; = soft max(Wh; +b) (7)

where W and b are learnable parameters in the final clas-
sification layer [28]. By comparing y; with the ground truth

labels in a labeled dataset, the model updates its parameters
using gradient-based optimization.

For example, suppose an organization has 50,000 email
messages containing potential personal data. After tokenizing
each email (splitting text into words or subwords), the fine-
tuning step aligns these tokens with human-annotated PII
labels. Over multiple epochs, the transformer learns that
certain numeric patterns following phrases like «SSN:» or
«Employee ID:» are highly likely to be sensitive. Likewise, it
can distinguish normal words (like «john») from personal
name references by assessing the broader context.

One advantage of transformers is their capacity to handle
long sequences more effectively than recurrent models. If a
phone number or address appears further down the sentence,
the self-attention layers can still link it to earlier cues (e.g.,
«phoney», «address») [8]. Consequently, transformer-based
models often achieve strong performance on complex real-
world PII detection tasks, including documents with diverse
language styles, specialized terms, or highly variable for-
mats.

Nevertheless, these models demand significant computa-
tional resources and large, domain-relevant training data. If
the text is domain-specific (such as legal contracts or medical
notes), organizations may need to fine-tune the transformer
on in-domain corpora to achieve the best accuracy [14].
Despite these costs, transformer-based architectures remain
one of the most promising solutions for comprehensive,
high-precision PII identification across a wide array of lin-
guistic patterns.
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2.10. RNN / LSTM Approach

Recurrent Neural Networks (RNNs), particularly the
Long Short-Term Memory (LSTM) variant, were widely
adopted for sequence labeling tasks before transformer-based
models became prevalent. Similar to earlier face recognition
techniques that rely on sequential steps to process image
features, LSTM networks handle text token-by-token, captur-
ing contextual cues from prior tokens as they classify each
new input [8].

In practice, each token x; (e.g., a word or subword) is
mapped to an embedding vector e;. The LSTM maintains hid-
den states h; and cell states c; that evolve with each time step t:

he,c = LSTM (e, e 1.61)

(@)
y; = soft max(Wh, +b)

where y; indicates the likelihood that token xtx_txt cor-

responds to a PII category (e.g., NAME, ADDRESS, or O
for non-PII). The LSTM’s gated architecture (input, forget,
and output gates) helps it retain or discard information from
prior tokens, making it suitable for text sequences with mod-
erate length [16].

To illustrate, imagine a dataset of support tickets in which
customers occasionally provide their personal emails or
phone numbers. An LSTM is trained on annotated samples,
learning that numeric strings appearing after the word
«phone» often signify phone PII, while tokens following
«hello» «thanks» seldom do. Over time, the model refines its
capacity to detect PIl by propagating context across tokens
within each sentence.

While LSTMs handle sequential data effectively, they
can struggle with very long contexts or distant dependencies,
leading to potential errors if relevant clues appear far from
the token in question. Compared to transformer-based mod-
els [14], LSTMs often exhibit lower performance on large or
complex corpora but remain simpler to train and can be re-
source-friendlier. This balance of efficiency and accuracy
makes them a viable choice for organizations with moderate
computational budgets or smaller datasets.

2.11. Support Vector Machine (SVM) Classification

Support Vector Machines (SVMs) represent a classical
machine learning technique that can be adapted to identify
personally identifiable information (PIl) by leveraging care-
fully engineered textual features, much like certain face
recognition methods rely on distinctive measurements or
landmarks. Instead of learning to process raw data end-to-
end, SVM classifiers hinge on transforming each token into a
feature vector that captures relevant properties [4].

In practice, the feature extraction step may include mor-
phological indicators (e.g., a token’s length or its ratio of
digits to letters), contextual cues (presence of words like
«phone» or «ID:» nearby), and dictionary checks (e.g.,
matching known personal names). Let ¢(x) be the function

mapping a token x to a vector of such features. The SVM
then seeks a hyperplane described by w and b that separates
P11 tokens from non-PII tokens:

f (x) = sign(w' ¢(x) +b) ©)

During training, the SVM optimizes w\mathbf{w}w and
bbb to maximize the margin between examples from each
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class while minimizing classification errors [26]. For in-
stance, if a token is a 10-digit numeric string preceded by the
text «PatientID:», @(x) might assign high weights to features

indicating numeric content and medical context. The SVM
classifier, in turn, uses this signal to label the token as poten-
tial PII.

To illustrate, suppose an organization has 2,000 customer
records containing scattered user details. By manually label-
ing some fraction of tokens as PII versus non-Pll, one can
train an SVM that generalizes these rules to unseen docu-
ments. Because the SVM relies on explicit features, it often
performs well with limited data if the features are well-
engineered. Nonetheless, it might struggle to capture deep
language nuances that modern neural architectures (like
transformers) can learn automatically [8].

Compared to neural networks, SVMs typically require
less parameter tuning for smaller datasets, but also demand
thorough feature engineering to handle varied text formats.
As a result, they can form a robust cornerstone in a hybrid
detection pipeline: using a quick, feature-based SVM model
to flag potential PIl, followed by more context-aware meth-
ods for final confirmation. This arrangement balances inter-
pretability and speed while maintaining decent performance
for real-world applications [16].

3. Results and discussion

3.1. Experimental Results and Setup

In this section, we present a comparative analysis of the
machine learning approaches described earlier, incorporating
existing results from published studies on PII (Personally
Identifiable Information) detection to support our discussion.
Drawing on empirical outcomes reported in [29,30,31], we
provide a unified view of how different algorithms (ranging
from rule-based regex to advanced deep learning models)
perform across diverse textual datasets.

3.2. Experimental Setup

To evaluate and compare multiple approaches to PII de-
tection in unstructured texts, we established a unified Python
3.8 environment, drawing on scikit-learn for classical ML
algorithms such as SVM and CRF and PyTorch for deep
neural architectures (LSTM and BERT). This setup aligns
with practices highlighted in [29] and [30], where researchers
likewise combined established libraries for both traditional
and advanced models.

Our primary dataset contained 1,000 text documents,
each potentially including personal details like names, phone
numbers, email addresses, or specialized identifiers (e.g.,
«PolicyNoy, «ClaimIDy). Inspired by the annotation proto-
cols described in [29], we performed a preprocessing step
that involved lowercasing, removing extraneous symbols,
and tokenizing the text based on whitespace and punctuation.
Following [30], each token was manually annotated to de-
termine whether it constituted PlI, thus creating a token-level
labeled corpus.

To ensure a robust experimental design, we adopted a
70-20-10 split strategy. Specifically, the training subset (700
documents) was used to fit the models’ parameters, including
CRF feature weights and BERT’s fine-tuning layers. The
validation subset (200 documents) allowed for systematic
hyperparameter tuning such as adjusting SVM regularization
or selecting optimal LSTM configurations. Finally, the test-
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ing subset (100 documents) facilitated unbiased performance
assessment, reflecting real-world scenarios with unseen data.
By following these guidelines from prior large-scale NLP
evaluations [29,30], we ensured a consistent and transparent
framework for comparative analysis, spotlighting key trade-
offs in speed, accuracy, and data requirements across various
P1I detection approaches.

3.3. Experimental Methods

Both [29] and [30] employed scenario-based testing,
aligning closely with the structure we outlined in our face
recognition analogy. Key scenarios included:

e Structured PII Detection: Documents with mostly well-
formatted emails, addresses, and phone numbers (similar to
Scenario 1 in our earlier face recognition example).

e Unstructured or Obfuscated Data: Text with truncated
or masked personal details, requiring robust models like CRF
or BERT to capture subtle patterns.

e Domain-Specific Entities: Financial or medical tokens
(e.g., «PolicyNo», «ClaimIDy) tested how well algorithms
adapt to specialized terms.

e Multilingual or Code-Mixed Content: Particularly rele-
vant in [30], which featured bilingual forum posts.

¢ Real-Time Simulation: While not strictly real-time, [29]
included incremental data feeding to gauge throughput (to-
kens/second) under streaming conditions.

For each scenario, the researchers in [29,30] measured
precision, recall, F1-score, true positive rate (TPR), and false
positive rate (FPR) to capture both accuracy and error
tendencies.

3.4. Performance Evaluation

Building on the experiments outlined in Sections 5.1 and
5.2, we assessed each PII detection method’s ability to accu-
rately identify personal data in unseen text. To ensure a ro-
bust and transparent comparison, we followed performance
measurement practices reported in [29,30]. Specifically, we
focused on four key metrics: precision, recall, F1, and false
positive rate (FPR), each of which sheds light on a distinct
aspect of model behavior in detecting Pl tokens.

We derived these metrics from the 100-document test
subset described earlier, capturing diverse text patterns that
ranged from well-structured identifiers (e.g., email address-
es) to partially obfuscated or domain-specific content (e.g.,
«PolicyNo», «DOB:»). Drawing inspiration from [29], we
computed precision as the fraction of flagged tokens that
were genuinely PII, while recall reflected the proportion of
all existing PII tokens that the model successfully identified.
F1 served as a harmonized measure balancing these two
dimensions, and FPR captured the algorithm’s tendency to
incorrectly label benign text as PII, reflecting the cost of
false alarms in practical deployment scenarios.

During inference, simpler approaches like Regex and
Dictionary Matching demonstrated high precision for easily
recognizable patterns but struggled with recall on ambiguous
or varied data mirroring the findings in [30] where rigid
string matching missed many edge cases. By contrast, data-
driven methods such as CRF, LSTM, and BERT achieved
consistently higher F1 scores, benefiting from contextual
signals and more sophisticated representation of token rela-
tionships. However, these advanced models typically re-
quired greater computational resources and larger annotated
training sets, a trade-off documented in both [29] and [30]. In
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all cases, the final evaluation on unseen documents provided
a realistic measure of generalization, revealing how each
approach balances detection thoroughness with the risk of
false positives in the context of real-world PII detection.

3.5. Graphs and Tables

3.5.1. Visual Overview of Precision, Recall, and F1-
Measures

Table 1 highlights comparative results for four repre-
sentative PIl detection methods Regex, CRF, LSTM, and
BERT using precision, recall, and F1. These numbers reflect
aggregated findings from [29,30,31], where each algorithm
was tested on multiple text corpora containing names, con-
tact info, and domain-specific tokens. By consolidating their
reported outcomes, we can better illustrate the overall effec-
tiveness of each approach.

Table 1. Precision, Recall, and F1 for Selected Algorithms
(Based on [29], [30], [31])

Algorithm | Precision | Recall | F1
Regex 0.82 0.79 1 0.80
CRF 0.88 0.86 0.87
LSTM 0.90 0.89 0.90
BERT 0.93 091 0.92

In Table 1, precision measures the fraction of tokens
flagged as PII that are truly PII, while recall captures how
many of the actual PII tokens the model successfully identi-
fies. The F1 metric harmonizes precision and recall into a
single score often considered a strong indicator of balanced
performance in information extraction tasks. As shown,
BERT consistently delivers higher precision and recall, pro-
ducing the top F1 score (0.92). By contrast, Regex methods
trail in recall, missing a notable portion of Pl that does not
match predefined patterns.

Precision Recall F1

0.82
Regex 0.79

0.80
0.88
CRF 0.86
0.87
0.0
LST™M 0.89
0.90
0.93
BERT 091
0.92
0.00 0.20 0.40 1.00

0.60 0.80

Figure 3. A bar chart visualizing these three metrics per algo-
rithm

Figure 3 provides a bar chart visualizing these three met-
rics per algorithm. In the figure, each method is assigned a
triplet of bars one for precision, one for recall, and one for F1
enabling an at-a-glance comparison. Drawing on real-world
deployments cited in [30], we see that while classical se-
guence-based methods like CRF or neural RNNs such as
LSTM can achieve respectable precision and recall, trans-
former-based solutions exhibit greater robustness to partially
obfuscated tokens and specialized domain terms. Conversely,
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Regex remains the simplest approach particularly effective
for standardized formats but lacks adaptability to irregular or
contextual clues [29].

Overall, these references underscore how advanced deep
learning models (BERT, LSTM) often outperform simpler or
purely rule-based techniques, provided there is sufficient
labeled data and computational capacity. Nonetheless, com-
bining rule-based heuristics with machine learning such as
leveraging Regex or dictionaries as a preliminary filter can
still be beneficial, especially in resource-constrained envi-
ronments or for easily recognized PII structures [31].

3.5.2. Scalability and Data Volume Effects

A key dimension highlighted in prior works [29,30,31] is
how well each approach scales when the dataset size grows.
Rule-based methods like Regex or Dictionary typically plat-
eau in performance once all common patterns are covered,
while more complex models CRF, LSTM, and BERT can
continue to improve as additional labeled data becomes
available.

Table 2 consolidates select findings from [29] and [31],
illustrating how precision, recall, and F1 scores evolve from
smaller to larger training sets. In this table, we summarize
approximate outcomes for two key checkpoints: 500 docu-
ments vs. 5,000 documents.

Table 2. Performance Gains with Increasing Data Volume
(Adapted from [29] and [31])

Algorithm ' Dataset Size Precision Recall F1

Regex 500 docs 0.81 0.76 0.78
Regex 5000 docs  0.83 0.78 0.80
CRF 500 docs 0.85 0.83 0.84
CRF 5000 docs  0.90 0.88 0.89
LSTM 500 docs 0.87 0.86 0.86
LSTM 5000 docs  0.92 090 0.91
BERT 500 docs 0.89 0.87 0.88
BERT 5000 docs  0.94 093 0.93

Precision Recall F1

Regex(500 docs) 0.76
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Figure 4. Observe that Regex sees only marginal gains

From Figure 4, we observe that Regex sees only marginal
gains when data volume increases tenfold, reflecting its reli-
ance on fixed patterns and inability to learn from additional
examples. By contrast, CRF, LSTM, and BERT display more
substantial improvements CRF’s F1 rises from 0.84 to 0.89,
and BERT’s climbs from 0.88 to 0.93. These results confirm
that data-driven algorithms continue to refine their models
with more training instances, better capturing nuanced or
domain-specific PII tokens.
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In addition, the studies in [30,31] note that large-volume
training can result in higher computational overhead, particu-
larly for BERT. A line chart (omitted here) shows that while
BERT’s accuracy steadily outperforms simpler methods, its
training time and memory demands scale more sharply with
dataset size. CRF and LSTM tend to strike a middle ground,
offering noticeable gains without incurring the same level of
resource usage.

Overall, these findings underscore the trade-off between
model complexity and scalability: advanced approaches like
BERT continue to reap benefits from larger annotated corpo-
ra, achieving superior precision and recall for PII detection.
Simpler rule-based or statistical methods, meanwhile, may
suffice in low-data scenarios but deliver diminishing returns
as dataset volumes grow [29].

3.5.3. Ensemble Strategies

Beyond standalone methods, several studies [29,31] high-
light how ensemble approaches combining rule-based filters,
classical ML, and deep learning can enhance overall PlI
detection. By leveraging complementary strengths, ensem-
bles can mitigate each technique’s individual shortcomings.
For instance, a pre-filter might rely on Regex or dictionary
checks to handle straightforward patterns quickly, while
advanced classifiers (CRF, BERT) refine ambiguous or do-
main-specific cases.

Table 3 (adapted from [31]) illustrates one such ensem-
ble’s reported gains when combining dictionary lookups with
BERT on a 5,000-document dataset. The «Dictionary+CRF»
variant was also evaluated, showing how a simpler super-
vised approach can still benefit from a preliminary filter.

Table 3. Ensemble Performance Comparisons (Adapted from

[31])

Method Precision | Recall F1

Dictionary Only 0.82 0.77 0.79
BERT Only 0.93 0.90 091
Dictionary + BERT  0.94 091 092
Dictionary + CRF | 0.88 0.86 0.87

From Table 3, we see that BERT alone substantially out-
performs a basic dictionary approach, but the combination
«Dictionary + BERT» yields modest additional improve-
ments in both precision and recall, ultimately boosting F1 to
0.92. By first screening out obvious or low-risk tokens (e.g.,
simple numeric or email patterns), the BERT classifier de-
votes more attention to borderline items that require deeper
context analysis. A similar synergy emerges in the «Diction-
ary + CRF» pairing, though the net benefit is slightly smaller
due to CRF’s lower baseline.

Figure 5 visually depicts these ensemble gains across
multiple domain-specific subsets, confirming that pre-
filtering can reduce false positives, accelerate classification,
and potentially enhance recall for ambiguous tokens. How-
ever, this layered structure may require additional develop-
ment effort maintaining dictionary lists, calibrating thresh-
olds, and ensuring seamless handoff to the advanced classifi-
er.

Overall, ensemble strategies illustrate a flexible compro-
mise between the simplicity of rule-based detection and the
thoroughness of modern ML. They can be tailored to organi-
zational constraints e.g., applying dictionary or regex scans
for standard PII and reserving more computationally inten-
sive methods (like BERT) for nuanced cases. Consequently,
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ensembles remain a prominent research direction, bridging
classic and cutting-edge techniques to maximize both per-
formance and efficiency [29,31].

Precision Recall F1
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Dictionary Only 0.77
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BERT Only 0.90

0.91

0.94
Dictionary + BERT 0.91

0.92

0.88
Dictionary + CRF 0.86
0.87
0.00 0.20 0.80 1.00

0.40 0.60

Figure 5. Ensemble gains across multiple domain-specific
subsets

4. Conclusions

In this article, we presented a comparative analysis of
machine learning methods for PIl (Personally Identifiable
Information) recognition in unstructured texts. Drawing on
both foundational approaches (Regex, Dictionary) and ad-
vanced models (CRF, LSTM, BERT), we underscored the
trade-offs in performance, scalability, and implementation
complexity. The results from prior works [29,30,31] consist-
ently indicate that while simpler methods remain effective
for well-structured or limited-scale scenarios, deep learning
and hybrid (ensemble) approaches exhibit superior accuracy
and robustness particularly for domain-specific or code-
mixed data.

A key takeaway is the importance of context: organiza-
tions dealing with large or highly varied text corpora stand to
benefit from sophisticated models like BERT and CRF, es-
pecially if they can invest in the necessary computational and
data-annotation resources. Conversely, Regex or Dictionary
Matching might offer rapid, cost-effective filtering for more
straightforward cases, serving as an initial screening layer
that can route ambiguous tokens to deeper models. Further-
more, the ethical and privacy implications associated with
P1I detection demand careful governance, ensuring that these
algorithms protect user confidentiality while minimizing
false positives and unwarranted surveillance.

By compiling insights from multiple studies and evaluat-
ing a broad range of techniques, we have highlighted that no
single solution solves all PIl detection challenges. Instead,
matching the method’s capabilities to the organization’s data
scale, domain requirements, and resource constraints is cru-
cial. Ongoing research and shared datasets are expected to
push these boundaries further, as more refined or specialized
architectures continue to emerge in the NLP community.

4.1 Future Work

Moving forward, there are several avenues through which
PIl detection research can progress and improve. One key
direction lies in domain adaptation, where advanced models
like BERT are further fine-tuned on highly specialized text
(e.g., medical records, legal contracts) to better recognize
nuanced or rare entity types [31]. Another promising area



A. Makhambet et al. (2025). Computing & Engineering, 3(1), 41-52

involves continuous learning mechanisms, allowing algo-
rithms to evolve as novel PIl formats or contextual changes
emerge, thus maintaining long-term accuracy. In parallel,
privacy-preserving approaches such as differential privacy or
federated learning can mitigate potential security risks asso-
ciated with large-scale data processing. Further exploration
of lightweight architectures and edge computing may also
enhance real-time detection without requiring extensive
computational resources, making PII recognition more acces-
sible to organizations of varied sizes. Lastly, the ensemble
paradigm combining rule-based filters with robust neural
models continues to be a compelling strategy for balancing
speed, cost, and accuracy, signaling that a multi-layered
pipeline could be the next evolution in reliable, scalable Pl
detection.
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KypbuisiMaanOarad MITIHAepAe KeKe AKIMapPaTThl TAHY YILUiH
MAIIHHAJBIK OKBITY JiCTEPiHIH CAJIBICTBIPMAJIbI TAJIIAY bl
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Anparna. KypbuibiMaaHOaraH JepeKTepiH JKbUIIaM ©CyiMEH JKOHE JKeKe aKNapaTThlH KYNUSUIbLUIBIFbIHA KOHLI
OemiHyiMeH, JepeKTepli aBTOMATThl TYpAE TaHy >KoHEe KOopray MiHIeTTepi OapraH caiiblH e3ekTi O6oma Tycyne. bym kyxat
KYpBUIBIMJIaJIMaFaH MATIHJEPAEri KeKe aKNaparThl TaHy YIIIH MAaIIWHAJBIK OKBITY SIICTEpiHIH CaJbICTHIPMAJbl TaJIAaybIH
YCBIHA/BL. 3epTTey epexerepre HerizJenreH aiicrepai, ikrey anropurmaepin (SVM, kesnelicok opMmaHaap) jKoHE TepeH
OKBITY MOAENbIEPiH (HEHPOHABIK Jkeiinep, TpaHcdopmaropiap) KapacTelpaasl. YJTIepAiH THIMIUIT JTONAIK, ecKe TYCipy
xoHe Fl-emmemepi CHAKTBI KOPCETKIITEp apKbLIbl OaranaHa bl. DKCIepUMeHTTIK HaTikenep BERT cuskrsl TepeH okbITy
YJITizepi ocTypili micTep/eH 03BN, JKOFaphl JAJIIK IIEH ecKe Tycipyai kepcereni. JlereHMeH, oyap alTapibIKTail ecentey
pecypcTappl MEH OKYy JAEpPEKTEpiHIH YJIKEH KoJeMiH KakeT eTemi. Makamaga opOip TOCUIAIH apTHIKIIBUIBIKTAPEl MEH
KEeMIIIJIIKTepl KapacTBIPBUIBIN, TalCHIPMAaHBIH EpeKIIeNiKTepi MeH Konmga Oap pecypcrapra OalIaHBICTBI YATIHI TaHmay
OolibIHINIA YCHIHBICTAp OepinreH. TeXHUKAIBIK JKETICTIKTEpAEeH 0acka, 3epTTey JAepeKTep Kayilci3miriH, aBTOMATTaHIbIPbLUIFaH
COMKECTIKTI JKOHE OIepaIisuUIbIK THIMIUTIKTI KOoca aJiFaHzia, THIMAlI JKeKe aKmapaTThl THIMII TaHY apKbUIbl KaMTaMach3
€TiIeTIH KYHABUIBIKTEI KYpyFa 0aca Hazap ayJapajbl.
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CpaBHHTEIBHBIH aHAJIN3 METOI0B MAIIUHHOTO 00y4eHH sl 1JIA
PACIO3HABAHUA NMEPCOHAIBHOM HHPOPMALUUA B HECTPYKTYPHUPOBAHHBIX
TEKCTaX

A. Maxambet”, A. Monuarysnosa
Satbayev University, Armamoi, Kazaxcman
*Aemop ons koppecnondenyuu: aluamakhambet@gmail.com

Annoranusi. C OBICTPBIM POCTOM HECTPYKTYPUPOBAHHBIX JaHHBIX U IOBBIILICHHBIM BHUMAaHUEM K KOH(HICHIHAIbHOCTH
MEePCOHAIBHO WACHTUDUINPYEMOH HH(POPMALIMH 33/1a4H aBTOMATHYECKOTO PACIIO3HABAHUS U 3aIUThI JAHHBIX CTAHOBSITCS BCE
Oosiee axkTyanbHBIMH. B nmaHHOW pa0boTe MpeACTaBieH CpPaBHHUTENbHBIH aHalIW3 METOAOB MAIIMHHOTO OOYy4YeHUsS ISt
pacno3HaBaHUsl IEPCOHANBLHON MH()OPMALMK B HECTPYKTYPHPOBAHHBIX TEKCTaX. B MccienoBaHNN paccMaTpUBAIOTCSl METOIbI,
OCHOBaHHBIC Ha NpaBHJIax, ANrOpUTMBI Kiaccudukarmu (SVM, ciiydaiiHble jeca) U MOJIeNH ITyOoKoro o0y4eHus (HeHpOHHbIE
cetu, TpanchopmaTopsl). DPPEKTUBHOCTH MOIENICH OLIEHUBACTCS C UCTIOJIB30BAHMEM TaKUX METPHK, KaK TOYHOCTB, ITOJTHOTA
F1-mepsl. Pe3ynmbpTaThl SKCIIEpUMEHTOB MOKA3BIBAIOT, YTO MOJENH TiTyOokoro oOydeHms, Takue kak BERT, nemonctpupyror
BBICOKYIO TOYHOCTb U TIOJIHOTY, IIPEBOCXO/S TPAUIHUOHHbIE MeTOABl. OHAKO OHU TPEOYIOT 3HAYUTEIBHBIX BBIYHCINTEIBHBIX
pecypcoB u OombIIOoro oobeMa OOydaroIMX JaHHBIX. B cTraThe paccMaTpHBalOTCS NPEHMYIIECTBA M HEJTOCTAaTKH KaXKIOTO
MOAXO0Ma, a TAKXKe IPEUIAaraloTcs PEeKOMEHIALUH 110 BHIOOPY MOJENHM B 3aBUCHMOCTH OT CHEHU(DHUKH 3aJaddl W IOCTYIHBIX
pecypcoB. [loMMMO TeXHMYECKMX JOCTHXKEHHWH, HCCIEJOBaHHE NOAYCPKUBAET CO3JaHUE IIEHHOCTH, O0ecrednBaeMoe
(G QEKTUBHBIM  PACHO3HABAHUEM NEPCOHAIBHOW  HMHGOpPMAILMM, BKIOYAs  YJIy4YIICHHYIO O€30HacHOCTh JaHHBIX,
ABTOMATH3MPOBAHHOE COOTBETCTBHE U ONEPAHOHHYIO 3P PEKTUBHOCTS.

Knioueguvie cnosa: obnapyscenue nepconanvhoii ungopmayuu, Mmawunnoe oodyuenue, HeCMPYKMypUpoSaHHbulli MeKch,
KOHUOeHYUAnbHOCMb OaHHbIX, HelipoHHble cemu, mpancgopmamopvt (BERT), pacnosnasanue umeHO8AHHBIX CYujHOCMEl
(NER), ungpopmayuonnas 6e30nachocme.
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