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Abstract. With the rapid growth of unstructured data and increased attention to the privacy of personally identifiable in-

formation (PII), the tasks of automatic recognition and data protection are becoming increasingly relevant. This paper provides 

a comparative analysis of machine learning methods for recognizing PII in unstructured texts. The study considers rule-based 

methods, classification algorithms (SVM, random forests), and deep learning models (neural networks, transformers). The 

effectiveness of the models is assessed using metrics such as accuracy, recall, and F1-measures. The experimental results show 

that deep learning models such as BERT demonstrate high accuracy and recall, outperforming traditional methods. However, 

they require significant computing resources and a large amount of training data. The article discusses the advantages and 

disadvantages of each approach, and offers recommendations for choosing a model depending on the specifics of the task and 

available resources. Beyond technical advances, the study highlights the value creation provided by effective PII recognition, 

including improved data security, automated compliance, and operational efficiency. 
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1. Introduction 

In the modern era of big data and the widespread use of 

Artificial Intelligence (AI) and Machine Learning (ML), 

there is growing attention to the automatic detection of Per-

sonally Identifiable Information (PII) in unstructured texts 

[1]. As the volume of digital information continues to in-

crease, various organizations and businesses process massive 

amounts of data, a substantial portion of which may contain 

sensitive information, such as names, addresses, identifica-

tion numbers, and other confidential data [2]. 

Effective and accurate PII recognition is vital for ensur-

ing data security, meeting regulatory requirements (e.g., 

GDPR or HIPAA), and mitigating risks of data breaches [3]. 

At the same time, automating the process of text analysis and 

filtering reduces operational costs and improves workflow 

efficiency, minimizing the need for manual document review 

[4]. 

However, the automatic identification of PII in unstruc-

tured sources faces several challenges. First, the diversity of 

text formats, styles, and languages calls for sophisticated 

Natural Language Processing (NLP) algorithms capable of 

correctly interpreting context [5]. Second, there is an in-

creased risk of false positives, in which algorithms mistaken-

ly classify harmless data as personal, leading to excessive 

blocking or anonymization of content [6]. 

Moreover, with the tightening of data protection regula-

tions (e.g., GDPR) and growing public attention to privacy 

concerns, system developers must consider both ethical and 

security aspects [7]. While ML-driven PII recognition can 

significantly enhance data security and the efficiency of text 

data analysis, it also introduces new risks related to algo-

rithmic vulnerabilities, biases, and the potential misuse of 

collected data [8]. 

This paper presents a comparative study of machine 

learning methods used for PII recognition in unstructured 

texts. The primary goal is to identify the most effective and 

accurate approaches and to examine the advantages and 

disadvantages of various methodologies, including rule-

based linguistic analysis, traditional ML algorithms, and 

modern neural networks [9]. 

 

 

Figure 1. Unstructured text data sources 

Conducting a comparative analysis of these methods is of 

great practical importance for companies and organizations 

handling sensitive data, as it enables them to select the most 

suitable solutions for specific business requirements and 
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existing infrastructures [10]. Furthermore, this research con-

tributes to the continued advancement of NLP and ML tech-

nologies, promoting the development of more precise, faster, 

and safer algorithms for processing personal data [11]. 

However, as with any technology that manages sensitive 

information, developing and implementing PII recognition 

systems requires close attention to issues of privacy, trans-

parency, and fairness [12]. It is essential to address ethical 

dilemmas arising from data collection and automatic pro-

cessing, as well as ensure the protection of analysis outcomes 

against unauthorized access [13]. 

1.1. Research Contribution 

An automatic PII recognition system for unstructured 

texts, based on machine learning methods, can significantly 

contribute to multiple research domains: 

- Enhancing NLP and entity recognition algorithms. The 

development of ML algorithms, including deep neural net-

works, can lead to improved accuracy in extracting personal 

information through consideration of linguistic context and 

syntactic nuances [14]. 

- Optimizing corporate processes and ensuring regulatory 

compliance. Automating PII detection facilitates faster and 

more reliable identification of critical information, simplify-

ing adherence to GDPR, HIPAA, and other regulations [15]. 

- Developing ethical and secure data processing ap-

proaches. As debates about privacy and transparency in ML 

systems intensify, this research drives innovation in secure 

data storage solutions and strategies to prevent misuse [16]. 

- Addressing algorithmic bias. Analyzing and mitigating 

biases in PII extraction from diverse text sources is critical 

for ensuring fair and generalized ML applications [17]. 

Therefore, this work constitutes an important step in ad-

vancing personal data recognition technologies, combining 

theoretical insights with practical relevance for information 

security experts, ML system developers, and NLP research-

ers. 

1.2. Paper Organization 

The remainder of this paper is structured as follows: 

- Section 2. Problem Identification and Significance dis-

cusses the key challenges of existing PII detection systems in 

unstructured texts and emphasizes the importance of further 

research. 

- Section 3. Proposed Plan outlines the proposed solution 

based on ML algorithms, highlighting how they can provide 

faster and more accurate PII recognition. 

- Section 4. Machine Learning Methods for PII Recogni-

tion reviews various approaches for identifying personal in-

formation, including rule-based linguistic methods and modern 

deep learning models, supported by practical examples. 

- Section 5. Experimental Results and Setup details the 

experimental methodology, datasets, and comparative analy-

sis findings, shedding light on the strengths and weaknesses 

of each method. 

- Section 6. Conclusion summarizes the key outcomes 

and contributions of the study, offering recommendations for 

future research on improving PII detection in unstructured 

texts [18]. 

In addressing a broad range of technological, legal, ethi-

cal, and practical aspects, this paper provides a comprehen-

sive perspective on the relevance and potential directions for 

ongoing development in PII recognition systems [19]. 

2. Materials and methods 

2.1. Problem Identification and Significance 

High-profile data breaches and regulatory pressures have 

intensified the need for effective, automated solutions to 

detect Personally Identifiable Information (PII) in unstruc-

tured texts. One prominent case occurred in 2017, when the 

credit-reporting agency Equifax suffered a cyberattack that 

exposed the personal data of over 147 million consumers, 

including names, Social Security numbers, and birth dates 

[20]. This breach not only demonstrated the vulnerabilities in 

data storage and processing but also highlighted the severe 

consequences both financial and reputational of insufficient 

PII protection. 

Subsequent incidents, such as the 2018 Marriott Interna-

tional breach that compromised the records of roughly 500 

million guests, have underscored the persistent challenges of 

safeguarding confidential information in large-scale data-

bases [21]. These cases collectively illustrate the increasing 

volume and complexity of unstructured text sources (e.g., 

emails, logs, documents, and social media posts) where PII 

can appear in unpredictable formats. Such heterogeneity 

complicates the process of accurate data extraction, leading 

to risks of inaccurate redaction or overlooked sensitive de-

tails. 

Beyond the immediate financial impact IBM estimated 

that the global average cost of a data breach reached USD 

4.35 million in 2022 [22] organizations also face mounting 

legal obligations to comply with regulations like GDPR and 

HIPAA. These regulations enforce stringent requirements on 

how sensitive data must be identified, protected, and handled 

[3]. However, manual review of large text corpora is time-

consuming, error-prone, and infeasible at scale, prompting a 

shift toward automated Machine Learning (ML) methods. 

Traditional keyword-based filters can produce high false-

positive rates, blocking legitimate content and degrading 

operational efficiency [6]. 

A major technical challenge lies in adapting ML-driven 

PII detection to diverse linguistic contexts. Real-world text 

data often contain colloquialisms, abbreviations, multilingual 

inputs, and context-dependent cues that necessitate robust 

Natural Language Processing (NLP) algorithms [5]. Even 

advanced deep learning approaches can be susceptible to 

errors if their training datasets lack coverage of specific do-

main terminologies or minority languages. This creates sub-

stantial barriers to generalization, where a model effectively 

trained on one data distribution struggles to maintain accura-

cy on new, unseen text sources [9]. 

Equally pressing are ethical and fairness considerations. 

Biases in training data or model architecture can inadvertent-

ly lead to overlooking or misclassifying certain de-

mographics, with significant consequences for privacy and 

compliance [17]. Over-sanitization of content may obstruct 

legitimate operations by excessively redacting or blocking 

important details, whereas under-sanitization can expose 

organizations to legal liability. These scenarios underscore 

the delicate balance between precision and recall in automat-

ed PII detection pipelines. 

Given the sheer scale and diversity of textual data in 

modern information systems, the development of robust 

machine learning methods for PII recognition becomes im-

perative. Accurate, reliable, and ethically responsible algo-

rithms can reduce manual effort, enhance security, and facili-
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tate compliance with increasingly strict regulations. Moreo-

ver, refining such models drives broader innovation in NLP, 

contributing novel techniques for entity extraction, domain 

adaptation, and bias mitigation. The ongoing research in this 

field, therefore, aims not just at curbing data breaches but 

also at shaping how organizations manage the privacy of 

individuals in a rapidly evolving digital landscape. 

2.2. Proposed Algorithms 

Effective PII (Personally Identifiable Information) recog-

nition in unstructured texts requires a combination of robust 

Natural Language Processing (NLP), machine learning algo-

rithms, and careful system design. Borrowing from best 

practices in entity recognition, text classification, and infor-

mation retrieval [5,9], this section outlines two conceptual 

algorithms for PII detection and risk-based classification. 

These proposed methods aim to ensure accurate, scalable, 

and ethical processing of sensitive information in diverse text 

corpora. 

2.2.1. PII Detection Workflow 

A typical PII detection pipeline consists of multiple stag-

es: text ingestion, preprocessing, named entity recognition, 

confidence scoring, and action (e.g., redaction, alerting). 

Figure 2 illustrates an example system architecture. 

 

 

Figure 2. A schematic representation of the PII detection sys-

tem 

In this diagram, raw text data is first preprocessed to han-

dle formatting variations and reduce noise (e.g., removing 

HTML tags, special characters). Next, a Named Entity 

Recognition (NER) model identifies potential PII tokens, 

such as names, addresses, and ID numbers [5]. The model 

assigns a confidence score to each detected entity, balancing 

false positives against false negatives [6]. Based on configu-

rable thresholds, certain flagged entities are either auto-

redacted, masked, or queued for human review [4,10]. 

 
Algorithm 1 Basic PII Detection Process 

 
1. Initialization: 

{T:Unstructured text corpus; M:ML-

based NER model; A:Action or Redaction Module; 

θ:Confidence threshold} 

2. Input: 

{T,M,A,θ} 

3. Output: 

{Processed text with masked or redacted PII} 

4. Set {T,M,A,θ} 

5. For each document d∈T: 

5.1. Preprocess d(tokenization, normalization, re-

moval of noise). 

5.2. Apply M to identify potential PII tokens in d. 

5.3. For each detected token t with confidence score 

sss: 

  If s≥θ then 

   Use A to redact or mask t. 

  Else 

   Ignore or log t as low-confidence detection. 

  End if 

6. End For 

7. Return the processed documents or text output. 

 
 

This algorithm provides a systematic approach for identi-

fying personally identifiable information (PII) within a cor-

pus of unstructured texts. It begins by initializing key com-

ponents namely, the unstructured text corpus, a trained 

named entity recognition (NER) model, a mechanism for 

redacting or masking detected entities, and a configurable 

confidence threshold. During execution, each document is 

preprocessed to remove noise and convert it into a consistent 

format for the NER model. The model then scans the docu-

ment to locate potential PII tokens (e.g., names, emails, so-

cial security numbers), assigning a confidence score to each 

detection. 

Any entity exceeding the set confidence threshold is sub-

ject to redaction or masking, ensuring that sensitive infor-

mation is not displayed in the final output. Conversely, to-

kens that fall below the threshold can be logged for further 

manual review or dismissed, depending on organizational 

requirements. In large-scale deployments, this loop continues 

for all documents in the corpus, allowing for automatic, high-

volume PII detection. By adjusting the threshold, an organi-

zation can tune the trade-off between false positives and false 

negatives. This modular design also enables straightforward 

updates or expansions, such as incorporating new entity 

types or integrating more advanced NLP models. 

This approach ensures that only tokens matching or sur-

passing a set confidence level [9] are redacted, minimizing 

unnecessary blocking of legitimate content. By iterating 

through documents in the corpus, the system can handle vast 

datasets automatically and reliably. 

2.3. Risk-Based Classification of PII 

Once potential PII is detected, organizations often require 

risk categorization to prioritize handling. For instance, Social 

Security Numbers or financial credentials may warrant tight-

er scrutiny than phone numbers [14,15]. Algorithm 2 intro-

duces a secondary classification mechanism to score and 
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categorize each detected entity, enabling adaptive responses 

such as heightened security review for high-risk data. 

 
Algorithm 2 Risk-Based Classification of Detected PII 

 
1. Initialization: 

{E:List of detected PII entities; C:Classification Mo

del; R:Risk categories; α:Risk thresholds} 

2. Input: 

{E,C,R,α} 

3. Output: 

{Risk-labeled entities and corresponding actions} 

4. Set {E,C,R,α} 

5. For each entity e∈E: 

5.1. Extract features for classification (e.g., entity 

type, context). 

5.2. Compute risk score r=C(e) (e.g., 0–1, with 1 = 

highest risk). 

5.3. If r≥  then 

  Label e as High Risk and trigger the associated 

high-risk action (e.g., strict redaction, audit). 

  Else if r≥  then 

  Label e as Medium Risk and apply moderate 

protective measures. 

  Else 

  Label e as Low Risk with minimal intervention. 

  End if 

6. End For 

7. Return the risk-labeled entities along with recom-

mended actions. 

 
After the initial detection of PII, Algorithm 2 applies a 

secondary classification step to label each identified entity 

according to its risk level. The process starts by gathering the 

list of detected tokens (or phrases) from the first algorithm. A 

dedicated classification model (e.g., a supervised or rule-

based system) then computes a risk score for each entity, 

considering factors such as entity type (e.g., financial data vs. 

basic contact information), the broader context in which it 

appears, and any domain-specific rules (e.g., compliance 

requirements in healthcare or finance). 

Based on configurable thresholds, each entity is catego-

rized into tiers such as High Risk, Medium Risk, or Low 

Risk. The outcome of this classification determines the ac-

tions to be taken. For instance, High-Risk data might trigger 

an immediate alert or mandatory encryption, while Low-Risk 

information may only warrant minimal masking or logging. 

This tiered approach helps organizations allocate security 

resources more effectively, focusing human attention on the 

entities most likely to result in privacy breaches or regulatory 

violations. The classification model can be periodically re-

trained or updated with new policies and domain knowledge, 

making it adaptable to evolving privacy regulations and 

emerging data types. 

This classification step reflects a best-practice approach 

recommended by many data protection guidelines [2,3]. By 

categorizing PII into different risk levels, organizations can 

allocate resources more efficiently, focusing manual reviews 

on the most sensitive or potentially harmful data [15,16]. 

2.4. Validation of PII Detection System Processes 

2.4.1. The Transformative Impact of ML-Driven PII 

Detection 

Hypothesis 1: Machine Learning (ML) techniques for PII 

recognition can fundamentally reshape data privacy and 

handling strategies, yet they also demand rigorous oversight 

to address transparency and compliance challenges. 

Lemma 1: ML-based PII detection achieves significant 

accuracy when identifying sensitive information in large or 

heterogeneous text datasets. 

Proof 1: Empirical studies have consistently shown that 

advanced named entity recognition and deep learning ap-

proaches attain high precision in detecting personal data 

(e.g., names, social security numbers, or email addresses) 

[23]. For example, a real-time system discussed at the 2021 

IEEE International Conference on Big Data demonstrated its 

ability to handle diverse text formats while maintaining effi-

ciency and reliability. These results underscore ML’s poten-

tial to automate the identification of privacy-sensitive tokens 

across large volumes of unstructured data. 

Corollary 1: Although ML solutions provide scalability 

and cost-effectiveness, they also introduce vulnerabilities, 

including possible over-reliance on automated decisions and 

limited interpretability, underscoring the need for proactive 

governance. 

Definition 1: ML-based PII detection entails deploying 

models trained on annotated corpora to classify or extract 

tokens containing personal information. This process typical-

ly involves text preprocessing, model inference, and redac-

tion or masking actions that comply with organizational 

policies and legal standards. 

Theorem 1: Responsible deployment of these automated 

tools requires careful consideration of user privacy rights, 

legal obligations, and potential model biases. 

Proof of Theorem 1: By virtue of scanning large textual 

corpora, ML-driven PII detection systems inherently process 

sensitive user data. They must align with regulations such as 

the General Data Protection Regulation (GDPR) [3] and 

incorporate measures for data minimization, role-based ac-

cess, and auditability. Inadequate controls can lead to unau-

thorized disclosure or disproportionate surveillance, thereby 

eroding trust in digital services. Hence, organizations must 

implement ethical and legal safeguards, along with transpar-

ent documentation of model usage and performance, to en-

sure responsible data stewardship. 

2.4.2. Reducing Bias and Strengthening Ethical Compli-

ance 

Hypothesis 2: Mitigating biases and proactively address-

ing ethical pitfalls are vital to ensuring fair, accurate, and 

socially acceptable ML-driven PII recognition. 

Lemma 2: Automated detection models are susceptible 

to bias when their training data or evaluation metrics do not 

account for the diverse languages, social contexts, and do-

main terminologies present in real-world text. 

Proof of Lemma 2: Biases can manifest if the model sys-

tematically overestimates PII presence in certain dialects 

(leading to excessive false positives) or fails to detect it in 

less-represented contexts. A 2022 survey on scalable, priva-

cy-preserving data processing [25] highlights how language 

patterns vary significantly, causing performance gaps when 

models trained primarily on one demographic are applied 

elsewhere. Such biases may result in inconsistent redaction 

or inadvertent exposure of sensitive tokens. 

Corollary 2: Institutions deploying these systems must 

conduct continuous performance audits, seeking to identify 
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and correct skewed outcomes through balanced datasets and 

model refinement. 

Definition 2: Bias in PII detection refers to systematic er-

rors that over- or under-identify private data for particular 

user groups, content domains, or linguistic styles, potentially 

undermining privacy guarantees and equitable treatment. 

Theorem 2: Effective bias mitigation in ML-based PII 

detection not only minimizes harm but also enhances trust-

worthiness and compliance with ethical and legal frame-

works. 

Proof of Theorem 2: When organizations implement 

best practices such as routine evaluations on varied text sets, 

active learning strategies to incorporate underrepresented 

samples, and explainability techniques model reliability 

improves. These steps reduce the risk of unintentional data 

leaks and violations of privacy laws [16]. Ultimately, fair, 

transparent, and adaptable PII detection pipelines reinforce 

users’ confidence, fulfill regulatory requirements, and boost 

the social acceptability of large-scale data analytics. 

2.5. Approaches for PII Detection 

Identifying personally identifiable information (PII) in 

unstructured texts involves multiple strategies, each with 

unique benefits and limitations [9,23]. Below are seven 

commonly used methods, ranging from simple rule-based 

approaches to advanced deep learning frameworks. Much 

like Eigenface-based PCA in face recognition, these tech-

niques aim to reduce the dimensionality of raw textual data 

or highlight key patterns for robust classification and extrac-

tion of sensitive content. 

2.5.1. Rule-Based (Regex) Method 

The rule-based (regex) method applies predefined tex-

tual patterns to detect personally identifiable information 

(PII) in unstructured text, analogous to how the Eigenface 

approach uses principal components to uncover dominant 

features in facial images. Instead of identifying directions of 

maximum variance in images, regex-based rules identify 

string formats that commonly represent sensitive data such as 

email addresses, phone numbers, or social security numbers 

[2]. 

A typical workflow begins with text preprocessing, 

where punctuation and special characters that might disrupt 

pattern matching are removed or standardized. Afterward, 

each token is compared against a curated set of regular ex-

pressions that capture known PII formats. For example, a 

simplified pattern for email detection might be: 

Regex_email=^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+.[A-Za-

z]{2,}$                                                                                 (1) 

Here, the characters [A-Za-z0-9.%+-] represent accepta-

ble username components, followed by the @ symbol, a 

domain name, and a top-level domain of length two or more. 

Real-world applications often employ more complex expres-

sions to handle edge cases or different email conventions 

[26]. 

To illustrate this approach, suppose we have a collection 

of N text files, each containing user-provided responses with 

potential PII. We can represent each file as a sequence of 

tokens {t1,t2,…,tm}. Our task is to scan these tokens and 

flag those that match known PII formats. Let us define a 

function M(t) that returns 1 if a token ttt matches any regex 

in our rule set and 0 otherwise: 

1
( )

0
M t


= 


   if t matches regex for PII,otherwise                (2) 

If M(ti)=1, the token  is likely to represent sensitive data 

e.g., an email address, a phone number, or an ID. We can 

then either mask this token (e.g., replacing it with 

«[REDACTED]») or log it for further manual review [4]. 

For instance, assume we have 100 text documents con-

taining user information, each up to 500 words in length. We 

initially remove extraneous punctuation, convert text to low-

ercase, and split everything into whitespace-delimited tokens. 

As we process each token, the email regex in Equation (1) 

captures strings like «jsmith@example.com» but skips ran-

dom alphanumeric text that does not match the email format. 

This process yields a set of flagged tokens representing po-

tential PII. 

Much like Eigenface-based dimensionality reduction, re-

gex-based detection streamlines textual data scanning by 

focusing on explicit patterns. However, it lacks adaptability 

to complex or unstructured scenarios that deviate from stand-

ard formats. In addition, purely rule-based methods may 

produce false positives if the text contains strings that super-

ficially resemble PII. Consequently, some organizations pair 

regex detection with more advanced methods (e.g., machine 

learning–based classification) to achieve higher accuracy and 

contextual understanding [16]. 

Despite these limitations, rule-based regex detection re-

mains a fast and transparent baseline for PII recognition, 

offering a solid starting point for many compliance-driven or 

resource-constrained environments. 

2.6. Dictionary and Keyword Matching 

Dictionary and keyword matching serve as a straightfor-

ward technique for detecting personally identifiable infor-

mation (PII) by comparing text tokens to a predefined vo-

cabulary of sensitive terms. This process resembles how 

certain facial recognition methods rely on stored facial fea-

tures or templates to verify identities, but here the templates 

are human-readable keywords or domain-specific phrases. 

In this approach, a lexicon (or dictionary) is compiled 

with entries representing typical PII markers. Examples 

might include recognizable substrings («DOB», «SSN», 

«passport»), personal name lists, or relevant technical terms 

(«CustomerID», «RecordNumber»). Once the dictionary D is 

established, each token in a document is examined to see if it 

matches (partially or fully) any entry. Consider the following 

simplified expression: 

1
( )

0
match t


= 


     if t∈D, otherwise                                     (3) 

Here, ttt represents a text token (e.g., «patientID», 

«john», or «accountNo»), and D contains items that indicate 

potential personal data. For instance, «john» could flag a 

personal name if it appears in the dictionary. In practice, 

modern dictionary-based systems often incorporate fuzzy 

matching or partial string matching to handle variations in 

spelling and capitalization [2]. 

Suppose we have a corpus of N user feedback forms, 

each containing free-text fields where users may disclose 

personal information. We start by curating a dictionary of 

size ∣D∣ = 200, comprising common given names, ID labels, 

and sensitive medical or financial terms. Then, we scan each 

mailto:+@[A-Za-z0-9.-]+.[A-Za-z]%7b2,%7d$
mailto:+@[A-Za-z0-9.-]+.[A-Za-z]%7b2,%7d$
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form token by token against D. If a token matches, we classi-

fy it as likely PII and take actions such as masking, redact-

ing, or logging for manual verification. 

As an example, assume a user’s message reads: «Hi, my 

name is John Smith, and my customerID is 12345». Upon 

tokenizing, the string «John» (or «john») may be found in the 

name dictionary, and «customerID» may match a technical 

field label. Both matches would be flagged for further priva-

cy handling [16]. 

A key benefit of dictionary/keyword matching is its sim-

plicity. Non-technical staff can update the lexicon to reflect 

emerging PII formats (e.g., new ID types). However, this 

method also risks false positives, particularly when diction-

ary terms appear in non-sensitive contexts (e.g., «Jordan» as 

a country name rather than a personal name). Similarly, it 

may miss domain-specific nuances if the dictionary is not 

comprehensive. Consequently, while this strategy can be 

highly interpretable and fast, many systems combine diction-

ary matching with more adaptive techniques like machine 

learning to improve overall detection accuracy [2, 4]. 

Despite these limitations, dictionary and keyword match-

ing remains an effective baseline for organizations seeking a 

transparent, easily modifiable solution to quickly locate ob-

vious instances of personal data in unstructured text [15]. 

2.7. Statistical (Heuristic) Models 

Statistical or heuristic approaches to PII detection differ 

from purely rule-based methods by incorporating probabilis-

tic reasoning and learned patterns of token usage. Much like 

dimension-reduction techniques in face recognition (e.g., 

PCA identifying areas of maximal variance), a heuristic 

model explores frequency distributions and contextual indi-

cators to estimate whether a given token is likely to be per-

sonal data [6]. 

A common example involves a Bayesian scheme in 

which each token www is assigned a probability ( | )P PII w . 

This probability is derived by combining the prior likelihood 

of encountering a PII token with the observed occurrence of 

www in labeled PII contexts. One simplified version of this 

formulation is: 

( | ) ( )
( | )

( )

P w PII P PII
P PII w

P w


=                                         (5) 

Here, ( | )P PII w  measures how frequently token www 

appears in PII-labeled text segments (e.g., user IDs, social 

security numbers), while ( )P PII represents the overall preva-

lence of personal data in the corpus [16]. The denominator 

( )P w  serves as a normalizing term to ensure the resulting 

probability is between 0 and 1. 

To apply this model, one typically collects a labeled da-

taset of documents, marking which tokens correspond to 

personal data. By comparing the frequency of each token in 

PII vs. non-PII contexts, the system learns how strongly any 

given string might suggest sensitive information. Suppose we 

have N user logs, each containing addresses, phone numbers, 

or free-form personal descriptions. After preprocessing, the 

model calculates ( | )P PII w  for each unique token based on 

its occurrence patterns. During inference, if this probability 

exceeds a chosen threshold (e.g., 0.7), the token is flagged 

for redaction or further inspection [2]. 

As a practical illustration, imagine a chatbot dataset in 

which phone-like numeric strings frequently appear after the 

words «call me at». Over time, the statistical approach rec-

ognizes that sequences resembling «(555) 123-4567» are 

strongly correlated with PII and assigns them high probabili-

ties. This contrasts with purely regex-based scanning, which 

might miss atypical phone formats or mislabeled numeric 

tokens [27]. 

Despite their adaptability, heuristic methods can still suf-

fer from false positives if limited contextual cues cause the 

model to overestimate certain token patterns. Moreover, 

these models typically assume independence between tokens, 

which is not always realistic in highly variable text. Conse-

quently, many organizations combine statistical models with 

more context-aware algorithms like Conditional Random 

Fields or transformer-based networks to enhance detection 

accuracy. Nonetheless, as an intermediate approach between 

rigid pattern matching and fully trained machine learning, 

statistical (heuristic) models provide flexibility and relatively 

low computational overhead, making them suitable for nu-

merous real-world PII detection tasks [16]. 

2.8. Conditional Random Fields (CRF) 

Conditional Random Fields (CRFs) provide a sequence-

aware approach to identifying personally identifiable infor-

mation (PII) in text, much like how certain face recognition 

techniques account for the spatial arrangement of facial fea-

tures rather than treating each pixel independently. Instead of 

isolating each token, CRFs analyze neighboring tokens and 

label transitions, enabling more nuanced PII detection [5]. 

CRFs are trained on labeled sequences of tokens, where 

each token is assigned a category (e.g., NAME, PHONE, 

ADDRESS, or 0 for non-PII). Formally, given a sequence of 

tokens x=(x1, x2, …, xn) and a corresponding label sequence 

y=(y1, y2, …, yn), a linear-chain CRF models: 

10( | ) exp( ( , 1, , ))n
k k k iiP y x f y y x i= −                         (6) 

where each fk is a feature function that may look at the 

current token xi, its neighbors (xi-1), (xi+1), dictionary match-

es, or even preceding labels (yi-1). The weights k  are 

learned so that the model yields high probabilities for correct 

label sequences. 

A typical preprocessing stage involves tokenizing the text 

and deriving a set of features per token, such as: 

• Lexical cues: whether the token is alphabetic, numeric, 

or mixed. 

• Contextual signals: if the token is preceded by «Name»: 

or «DOB». 

• Dictionary matches: does the token appear in a special-

ized dictionary of personal names or ID terms? 

Once trained, the CRF uses these feature interactions to 

assign labels more contextually. For example, consider the 

sentence: «My phone is 555-123-4567». If the CRF learns 

that numeric tokens often follow the word «phone», it will be 

more confident in labeling «555-123-4567» as PHONE ra-

ther than non-PII. This sequence-based reasoning often 

yields fewer misclassifications than methods that handle 

tokens in isolation [16]. 

To illustrate, imagine a dataset of 5,000 medical tran-

scripts where each transcript might contain names, addresses, 

and patient IDs scattered throughout. A CRF can learn that 

certain numeric patterns frequently appear after «PatientID:» 
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and thus, label them accordingly. By capturing transitions 

(e.g., from NAME to ID labels), the model refines its under-

standing of how tokens chain together in PII contexts. 

Although CRFs require annotated training data and more 

computational resources than simple regex scanning, they 

often produce higher accuracy in scenarios where the sur-

rounding text or label dependencies help to clarify ambigu-

ous tokens. Consequently, CRFs are a robust choice for or-

ganizations handling large, unstructured text collections 

where PII can appear in diverse formats [27]. 

2.9. Transformer-Based (e.g., BERT) Model 

Transformer-based models, such as BERT (Bidirectional 

Encoder Representations from Transformers), represent a 

state-of-the-art approach to detecting personally identifiable 

information (PII) in unstructured text. Much like advanced 

face recognition methods leverage deep convolutional net-

works to capture intricate visual patterns, transformers apply 

self-attention mechanisms to uncover long-range dependen-

cies in language [14]. 

These models are typically pre-trained on massive corpo-

ra to learn contextual embeddings, meaning each token in a 

sentence is informed by the surrounding words. During fine-

tuning for PII detection, an additional output layer is added 

on top of the transformer. This layer classifies each token 

into categories (e.g., NAME, EMAIL, ID_NUMBER, or O 

for non-PII). Formally, if  denotes a tokenized sequence 

and hi the hidden vector for the i-th token, the model com-

putes: 

max( )i iy soft Wh b= +                                                         (7) 

where W and b are learnable parameters in the final clas-

sification layer [28]. By comparing iy with the ground truth 

labels in a labeled dataset, the model updates its parameters 

using gradient-based optimization. 

For example, suppose an organization has 50,000 email 

messages containing potential personal data. After tokenizing 

each email (splitting text into words or subwords), the fine-

tuning step aligns these tokens with human-annotated PII 

labels. Over multiple epochs, the transformer learns that 

certain numeric patterns following phrases like «SSN:» or 

«Employee ID:» are highly likely to be sensitive. Likewise, it 

can distinguish normal words (like «john») from personal 

name references by assessing the broader context. 

One advantage of transformers is their capacity to handle 

long sequences more effectively than recurrent models. If a 

phone number or address appears further down the sentence, 

the self-attention layers can still link it to earlier cues (e.g., 

«phone», «address») [8]. Consequently, transformer-based 

models often achieve strong performance on complex real-

world PII detection tasks, including documents with diverse 

language styles, specialized terms, or highly variable for-

mats. 

Nevertheless, these models demand significant computa-

tional resources and large, domain-relevant training data. If 

the text is domain-specific (such as legal contracts or medical 

notes), organizations may need to fine-tune the transformer 

on in-domain corpora to achieve the best accuracy [14]. 

Despite these costs, transformer-based architectures remain 

one of the most promising solutions for comprehensive, 

high-precision PII identification across a wide array of lin-

guistic patterns. 

2.10. RNN / LSTM Approach 

Recurrent Neural Networks (RNNs), particularly the 

Long Short-Term Memory (LSTM) variant, were widely 

adopted for sequence labeling tasks before transformer-based 

models became prevalent. Similar to earlier face recognition 

techniques that rely on sequential steps to process image 

features, LSTM networks handle text token-by-token, captur-

ing contextual cues from prior tokens as they classify each 

new input [8]. 

In practice, each token xt (e.g., a word or subword) is 

mapped to an embedding vector et. The LSTM maintains hid-

den states ht and cell states ct that evolve with each time step t: 

1 1, ( , , )

max( )

t t t t t

t t

h c LSTM e h c

y soft Wh b

− −=

= +
                                                (8) 

where iy indicates the likelihood that token xtx_txt cor-

responds to a PII category (e.g., NAME, ADDRESS, or O 

for non-PII). The LSTM’s gated architecture (input, forget, 

and output gates) helps it retain or discard information from 

prior tokens, making it suitable for text sequences with mod-

erate length [16]. 

To illustrate, imagine a dataset of support tickets in which 

customers occasionally provide their personal emails or 

phone numbers. An LSTM is trained on annotated samples, 

learning that numeric strings appearing after the word 

«phone» often signify phone PII, while tokens following 

«hello» «thanks» seldom do. Over time, the model refines its 

capacity to detect PII by propagating context across tokens 

within each sentence. 

While LSTMs handle sequential data effectively, they 

can struggle with very long contexts or distant dependencies, 

leading to potential errors if relevant clues appear far from 

the token in question. Compared to transformer-based mod-

els [14], LSTMs often exhibit lower performance on large or 

complex corpora but remain simpler to train and can be re-

source-friendlier. This balance of efficiency and accuracy 

makes them a viable choice for organizations with moderate 

computational budgets or smaller datasets. 

2.11. Support Vector Machine (SVM) Classification 

Support Vector Machines (SVMs) represent a classical 

machine learning technique that can be adapted to identify 

personally identifiable information (PII) by leveraging care-

fully engineered textual features, much like certain face 

recognition methods rely on distinctive measurements or 

landmarks. Instead of learning to process raw data end-to-

end, SVM classifiers hinge on transforming each token into a 

feature vector that captures relevant properties [4]. 

In practice, the feature extraction step may include mor-

phological indicators (e.g., a token’s length or its ratio of 

digits to letters), contextual cues (presence of words like 

«phone» or «ID:» nearby), and dictionary checks (e.g., 

matching known personal names). Let ( )x  be the function 

mapping a token x to a vector of such features. The SVM 

then seeks a hyperplane described by w and b that separates 

PII tokens from non-PII tokens: 

( ) ( ( ) )tf x sign w x b= +                                                       (9) 

During training, the SVM optimizes w\mathbf{w}w and 

bbb to maximize the margin between examples from each 
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class while minimizing classification errors [26]. For in-

stance, if a token is a 10-digit numeric string preceded by the 

text «PatientID:», ( )x might assign high weights to features 

indicating numeric content and medical context. The SVM 

classifier, in turn, uses this signal to label the token as poten-

tial PII. 

To illustrate, suppose an organization has 2,000 customer 

records containing scattered user details. By manually label-

ing some fraction of tokens as PII versus non-PII, one can 

train an SVM that generalizes these rules to unseen docu-

ments. Because the SVM relies on explicit features, it often 

performs well with limited data if the features are well-

engineered. Nonetheless, it might struggle to capture deep 

language nuances that modern neural architectures (like 

transformers) can learn automatically [8]. 

Compared to neural networks, SVMs typically require 

less parameter tuning for smaller datasets, but also demand 

thorough feature engineering to handle varied text formats. 

As a result, they can form a robust cornerstone in a hybrid 

detection pipeline: using a quick, feature-based SVM model 

to flag potential PII, followed by more context-aware meth-

ods for final confirmation. This arrangement balances inter-

pretability and speed while maintaining decent performance 

for real-world applications [16]. 

3. Results and discussion 

3.1. Experimental Results and Setup 

In this section, we present a comparative analysis of the 

machine learning approaches described earlier, incorporating 

existing results from published studies on PII (Personally 

Identifiable Information) detection to support our discussion. 

Drawing on empirical outcomes reported in [29,30,31], we 

provide a unified view of how different algorithms (ranging 

from rule-based regex to advanced deep learning models) 

perform across diverse textual datasets. 

3.2. Experimental Setup 

To evaluate and compare multiple approaches to PII de-

tection in unstructured texts, we established a unified Python 

3.8 environment, drawing on scikit-learn for classical ML 

algorithms such as SVM and CRF and PyTorch for deep 

neural architectures (LSTM and BERT). This setup aligns 

with practices highlighted in [29] and [30], where researchers 

likewise combined established libraries for both traditional 

and advanced models. 

Our primary dataset contained 1,000 text documents, 

each potentially including personal details like names, phone 

numbers, email addresses, or specialized identifiers (e.g., 

«PolicyNo», «ClaimID»). Inspired by the annotation proto-

cols described in [29], we performed a preprocessing step 

that involved lowercasing, removing extraneous symbols, 

and tokenizing the text based on whitespace and punctuation. 

Following [30], each token was manually annotated to de-

termine whether it constituted PII, thus creating a token-level 

labeled corpus. 

To ensure a robust experimental design, we adopted a 

70–20–10 split strategy. Specifically, the training subset (700 

documents) was used to fit the models’ parameters, including 

CRF feature weights and BERT’s fine-tuning layers. The 

validation subset (200 documents) allowed for systematic 

hyperparameter tuning such as adjusting SVM regularization 

or selecting optimal LSTM configurations. Finally, the test-

ing subset (100 documents) facilitated unbiased performance 

assessment, reflecting real-world scenarios with unseen data. 

By following these guidelines from prior large-scale NLP 

evaluations [29,30], we ensured a consistent and transparent 

framework for comparative analysis, spotlighting key trade-

offs in speed, accuracy, and data requirements across various 

PII detection approaches. 

3.3. Experimental Methods 

Both [29] and [30] employed scenario-based testing, 

aligning closely with the structure we outlined in our face 

recognition analogy. Key scenarios included: 

• Structured PII Detection: Documents with mostly well-

formatted emails, addresses, and phone numbers (similar to 

Scenario 1 in our earlier face recognition example). 

• Unstructured or Obfuscated Data: Text with truncated 

or masked personal details, requiring robust models like CRF 

or BERT to capture subtle patterns. 

• Domain-Specific Entities: Financial or medical tokens 

(e.g., «PolicyNo», «ClaimID») tested how well algorithms 

adapt to specialized terms. 

• Multilingual or Code-Mixed Content: Particularly rele-

vant in [30], which featured bilingual forum posts. 

• Real-Time Simulation: While not strictly real-time, [29] 

included incremental data feeding to gauge throughput (to-

kens/second) under streaming conditions. 

For each scenario, the researchers in [29,30] measured 

precision, recall, F1-score, true positive rate (TPR), and false 

positive rate (FPR) to capture both accuracy and error 

tendencies. 

3.4. Performance Evaluation 

Building on the experiments outlined in Sections 5.1 and 

5.2, we assessed each PII detection method’s ability to accu-

rately identify personal data in unseen text. To ensure a ro-

bust and transparent comparison, we followed performance 

measurement practices reported in [29,30]. Specifically, we 

focused on four key metrics: precision, recall, F1, and false 

positive rate (FPR), each of which sheds light on a distinct 

aspect of model behavior in detecting PII tokens. 

We derived these metrics from the 100-document test 

subset described earlier, capturing diverse text patterns that 

ranged from well-structured identifiers (e.g., email address-

es) to partially obfuscated or domain-specific content (e.g., 

«PolicyNo», «DOB:»). Drawing inspiration from [29], we 

computed precision as the fraction of flagged tokens that 

were genuinely PII, while recall reflected the proportion of 

all existing PII tokens that the model successfully identified. 

F1 served as a harmonized measure balancing these two 

dimensions, and FPR captured the algorithm’s tendency to 

incorrectly label benign text as PII, reflecting the cost of 

false alarms in practical deployment scenarios. 

During inference, simpler approaches like Regex and 

Dictionary Matching demonstrated high precision for easily 

recognizable patterns but struggled with recall on ambiguous 

or varied data mirroring the findings in [30] where rigid 

string matching missed many edge cases. By contrast, data-

driven methods such as CRF, LSTM, and BERT achieved 

consistently higher F1 scores, benefiting from contextual 

signals and more sophisticated representation of token rela-

tionships. However, these advanced models typically re-

quired greater computational resources and larger annotated 

training sets, a trade-off documented in both [29] and [30]. In 
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all cases, the final evaluation on unseen documents provided 

a realistic measure of generalization, revealing how each 

approach balances detection thoroughness with the risk of 

false positives in the context of real-world PII detection. 

3.5. Graphs and Tables 

3.5.1. Visual Overview of Precision, Recall, and F1-

Measures 

Table 1 highlights comparative results for four repre-

sentative PII detection methods Regex, CRF, LSTM, and 

BERT using precision, recall, and F1. These numbers reflect 

aggregated findings from [29,30,31], where each algorithm 

was tested on multiple text corpora containing names, con-

tact info, and domain-specific tokens. By consolidating their 

reported outcomes, we can better illustrate the overall effec-

tiveness of each approach. 

Table 1. Precision, Recall, and F1 for Selected Algorithms 

(Based on [29], [30], [31]) 

Algorithm Precision Recall F1 

Regex 0.82 0.79 0.80 

CRF 0.88 0.86 0.87 

LSTM 0.90 0.89 0.90 

BERT 0.93 0.91 0.92 

 

In Table 1, precision measures the fraction of tokens 

flagged as PII that are truly PII, while recall captures how 

many of the actual PII tokens the model successfully identi-

fies. The F1 metric harmonizes precision and recall into a 

single score often considered a strong indicator of balanced 

performance in information extraction tasks. As shown, 

BERT consistently delivers higher precision and recall, pro-

ducing the top F1 score (0.92). By contrast, Regex methods 

trail in recall, missing a notable portion of PII that does not 

match predefined patterns. 

 

 

Figure 3. A bar chart visualizing these three metrics per algo-

rithm 

Figure 3 provides a bar chart visualizing these three met-

rics per algorithm. In the figure, each method is assigned a 

triplet of bars one for precision, one for recall, and one for F1 

enabling an at-a-glance comparison. Drawing on real-world 

deployments cited in [30], we see that while classical se-

quence-based methods like CRF or neural RNNs such as 

LSTM can achieve respectable precision and recall, trans-

former-based solutions exhibit greater robustness to partially 

obfuscated tokens and specialized domain terms. Conversely, 

Regex remains the simplest approach particularly effective 

for standardized formats but lacks adaptability to irregular or 

contextual clues [29]. 

Overall, these references underscore how advanced deep 

learning models (BERT, LSTM) often outperform simpler or 

purely rule-based techniques, provided there is sufficient 

labeled data and computational capacity. Nonetheless, com-

bining rule-based heuristics with machine learning such as 

leveraging Regex or dictionaries as a preliminary filter can 

still be beneficial, especially in resource-constrained envi-

ronments or for easily recognized PII structures [31]. 

3.5.2. Scalability and Data Volume Effects 

A key dimension highlighted in prior works [29,30,31] is 

how well each approach scales when the dataset size grows. 

Rule-based methods like Regex or Dictionary typically plat-

eau in performance once all common patterns are covered, 

while more complex models CRF, LSTM, and BERT can 

continue to improve as additional labeled data becomes 

available. 

Table 2 consolidates select findings from [29] and [31], 

illustrating how precision, recall, and F1 scores evolve from 

smaller to larger training sets. In this table, we summarize 

approximate outcomes for two key checkpoints: 500 docu-

ments vs. 5,000 documents. 

Table 2. Performance Gains with Increasing Data Volume 

(Adapted from [29] and [31]) 

Algorithm      Dataset Size     Precision     Recall     F1 

Regex          500 docs        0.81          0.76       0.78 

Regex          5000 docs        0.83          0.78 0.80 

CRF            500 docs        0.85 0.83       0.84 

CRF            5000 docs        0.90          0.88       0.89 

LSTM           500 docs        0.87          0.86       0.86 

LSTM           5000 docs        0.92          0.90       0.91 

BERT           500 docs        0.89          0.87       0.88 

BERT           5000 docs        0.94          0.93       0.93 

 

 

Figure 4. Observe that Regex sees only marginal gains 

From Figure 4, we observe that Regex sees only marginal 

gains when data volume increases tenfold, reflecting its reli-

ance on fixed patterns and inability to learn from additional 

examples. By contrast, CRF, LSTM, and BERT display more 

substantial improvements CRF’s F1 rises from 0.84 to 0.89, 

and BERT’s climbs from 0.88 to 0.93. These results confirm 

that data-driven algorithms continue to refine their models 

with more training instances, better capturing nuanced or 

domain-specific PII tokens. 
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In addition, the studies in [30,31] note that large-volume 

training can result in higher computational overhead, particu-

larly for BERT. A line chart (omitted here) shows that while 

BERT’s accuracy steadily outperforms simpler methods, its 

training time and memory demands scale more sharply with 

dataset size. CRF and LSTM tend to strike a middle ground, 

offering noticeable gains without incurring the same level of 

resource usage. 

Overall, these findings underscore the trade-off between 

model complexity and scalability: advanced approaches like 

BERT continue to reap benefits from larger annotated corpo-

ra, achieving superior precision and recall for PII detection. 

Simpler rule-based or statistical methods, meanwhile, may 

suffice in low-data scenarios but deliver diminishing returns 

as dataset volumes grow [29]. 

3.5.3. Ensemble Strategies 

Beyond standalone methods, several studies [29,31] high-

light how ensemble approaches combining rule-based filters, 

classical ML, and deep learning can enhance overall PII 

detection. By leveraging complementary strengths, ensem-

bles can mitigate each technique’s individual shortcomings. 

For instance, a pre-filter might rely on Regex or dictionary 

checks to handle straightforward patterns quickly, while 

advanced classifiers (CRF, BERT) refine ambiguous or do-

main-specific cases. 

Table 3 (adapted from [31]) illustrates one such ensem-

ble’s reported gains when combining dictionary lookups with 

BERT on a 5,000-document dataset. The «Dictionary+CRF» 

variant was also evaluated, showing how a simpler super-

vised approach can still benefit from a preliminary filter. 

Table 3. Ensemble Performance Comparisons (Adapted from 

[31]) 

Method Precision    Recall    F1 

Dictionary Only            0.82        0.77      0.79 

BERT Only                  0.93        0.90      0.91 

Dictionary + BERT          0.94 0.91 0.92 

Dictionary + CRF 0.88        0.86      0.87 

 

From Table 3, we see that BERT alone substantially out-

performs a basic dictionary approach, but the combination 

«Dictionary + BERT» yields modest additional improve-

ments in both precision and recall, ultimately boosting F1 to 

0.92. By first screening out obvious or low-risk tokens (e.g., 

simple numeric or email patterns), the BERT classifier de-

votes more attention to borderline items that require deeper 

context analysis. A similar synergy emerges in the «Diction-

ary + CRF» pairing, though the net benefit is slightly smaller 

due to CRF’s lower baseline. 

Figure 5 visually depicts these ensemble gains across 

multiple domain-specific subsets, confirming that pre-

filtering can reduce false positives, accelerate classification, 

and potentially enhance recall for ambiguous tokens. How-

ever, this layered structure may require additional develop-

ment effort maintaining dictionary lists, calibrating thresh-

olds, and ensuring seamless handoff to the advanced classifi-

er. 

Overall, ensemble strategies illustrate a flexible compro-

mise between the simplicity of rule-based detection and the 

thoroughness of modern ML. They can be tailored to organi-

zational constraints e.g., applying dictionary or regex scans 

for standard PII and reserving more computationally inten-

sive methods (like BERT) for nuanced cases. Consequently, 

ensembles remain a prominent research direction, bridging 

classic and cutting-edge techniques to maximize both per-

formance and efficiency [29,31]. 

 

 

Figure 5. Ensemble gains across multiple domain-specific 

subsets 

4. Conclusions 

In this article, we presented a comparative analysis of 

machine learning methods for PII (Personally Identifiable 

Information) recognition in unstructured texts. Drawing on 

both foundational approaches (Regex, Dictionary) and ad-

vanced models (CRF, LSTM, BERT), we underscored the 

trade-offs in performance, scalability, and implementation 

complexity. The results from prior works [29,30,31] consist-

ently indicate that while simpler methods remain effective 

for well-structured or limited-scale scenarios, deep learning 

and hybrid (ensemble) approaches exhibit superior accuracy 

and robustness particularly for domain-specific or code-

mixed data. 

A key takeaway is the importance of context: organiza-

tions dealing with large or highly varied text corpora stand to 

benefit from sophisticated models like BERT and CRF, es-

pecially if they can invest in the necessary computational and 

data-annotation resources. Conversely, Regex or Dictionary 

Matching might offer rapid, cost-effective filtering for more 

straightforward cases, serving as an initial screening layer 

that can route ambiguous tokens to deeper models. Further-

more, the ethical and privacy implications associated with 

PII detection demand careful governance, ensuring that these 

algorithms protect user confidentiality while minimizing 

false positives and unwarranted surveillance. 

By compiling insights from multiple studies and evaluat-

ing a broad range of techniques, we have highlighted that no 

single solution solves all PII detection challenges. Instead, 

matching the method’s capabilities to the organization’s data 

scale, domain requirements, and resource constraints is cru-

cial. Ongoing research and shared datasets are expected to 

push these boundaries further, as more refined or specialized 

architectures continue to emerge in the NLP community. 

4.1 Future Work 

Moving forward, there are several avenues through which 

PII detection research can progress and improve. One key 

direction lies in domain adaptation, where advanced models 

like BERT are further fine-tuned on highly specialized text 

(e.g., medical records, legal contracts) to better recognize 

nuanced or rare entity types [31]. Another promising area 
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involves continuous learning mechanisms, allowing algo-

rithms to evolve as novel PII formats or contextual changes 

emerge, thus maintaining long-term accuracy. In parallel, 

privacy-preserving approaches such as differential privacy or 

federated learning can mitigate potential security risks asso-

ciated with large-scale data processing. Further exploration 

of lightweight architectures and edge computing may also 

enhance real-time detection without requiring extensive 

computational resources, making PII recognition more acces-

sible to organizations of varied sizes. Lastly, the ensemble 

paradigm combining rule-based filters with robust neural 

models continues to be a compelling strategy for balancing 

speed, cost, and accuracy, signaling that a multi-layered 

pipeline could be the next evolution in reliable, scalable PII 

detection. 
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Құрылымданбаған мәтіндерде жеке ақпаратты тану үшін 

машиналық оқыту әдістерінің салыстырмалы талдауы 

А. Махамбет*, А. Молдагулова 

Satbayev University, Алматы, Қазақстан 

*Корреспонденция үшін автор: aluamakhambet@gmail.com 

Аңдатпа. Құрылымданбаған деректердің жылдам өсуімен және жеке ақпараттың құпиялылығына көңіл 

бөлінуімен, деректерді автоматты түрде тану және қорғау міндеттері барған сайын өзекті бола түсуде. Бұл құжат 

құрылымдалмаған мәтіндердегі жеке ақпаратты тану үшін машиналық оқыту әдістерінің салыстырмалы талдауын 

ұсынады. Зерттеу ережелерге негізделген әдістерді, жіктеу алгоритмдерін (SVM, кездейсоқ ормандар) және терең 

оқыту модельдерін (нейрондық желілер, трансформаторлар) қарастырады. Үлгілердің тиімділігі дәлдік, еске түсіру 

және F1-өлшемдері сияқты көрсеткіштер арқылы бағаланады. Эксперименттік нәтижелер BERT сияқты терең оқыту 

үлгілері дәстүрлі әдістерден озып, жоғары дәлдік пен еске түсіруді көрсетеді. Дегенмен, олар айтарлықтай есептеу 

ресурстары мен оқу деректерінің үлкен көлемін қажет етеді. Мақалада әрбір тәсілдің артықшылықтары мен 

кемшіліктері қарастырылып, тапсырманың ерекшеліктері мен қолда бар ресурстарға байланысты үлгіні таңдау 

бойынша ұсыныстар берілген. Техникалық жетістіктерден басқа, зерттеу деректер қауіпсіздігін, автоматтандырылған 

сәйкестікті және операциялық тиімділікті қоса алғанда, тиімді жеке ақпаратты тиімді тану арқылы қамтамасыз 

етілетін құндылықты құруға баса назар аударады. 
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Негізгі сөздер: жеке ақпаратты анықтау, машиналық оқыту, құрылымданбаған мәтін, деректердің құпиялы-

лығы, нейрондық желілер, трансформаторлар (BERT), аталған нысанды тану (NER), ақпараттық қауіпсіздік. 

Сравнительный анализ методов машинного обучения для 

распознавания персональной информации в неструктурированных 

текстах 

А. Махамбет*, А. Молдагулова 

Satbayev University, Алматы, Казахстан 

*Автор для корреспонденции: aluamakhambet@gmail.com 

Аннотация. С быстрым ростом неструктурированных данных и повышенным вниманием к конфиденциальности 

персонально идентифицируемой информации задачи автоматического распознавания и защиты данных становятся все 

более актуальными. В данной работе представлен сравнительный анализ методов машинного обучения для 

распознавания персональной информации в неструктурированных текстах. В исследовании рассматриваются методы, 

основанные на правилах, алгоритмы классификации (SVM, случайные леса) и модели глубокого обучения (нейронные 

сети, трансформаторы). Эффективность моделей оценивается с использованием таких метрик, как точность, полнота и 

F1-меры. Результаты экспериментов показывают, что модели глубокого обучения, такие как BERT, демонстрируют 

высокую точность и полноту, превосходя традиционные методы. Однако они требуют значительных вычислительных 

ресурсов и большого объема обучающих данных. В статье рассматриваются преимущества и недостатки каждого 

подхода, а также предлагаются рекомендации по выбору модели в зависимости от специфики задачи и доступных 

ресурсов. Помимо технических достижений, исследование подчеркивает создание ценности, обеспечиваемое 

эффективным распознаванием персональной информации, включая улучшенную безопасность данных, 

автоматизированное соответствие и операционную эффективность. 

Ключевые слова: обнаружение персональной информации, машинное обучение, неструктурированный текст, 

конфиденциальность данных, нейронные сети, трансформаторы (BERT), распознавание именованных сущностей 

(NER), информационная безопасность. 
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