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Abstract. This review explores recent advancements in data security methodologies for distributed systems used in pro-

cessing big data. With the proliferation of cloud, fog, and edge computing, protecting personally identifiable information (PII) 

has become a key priority. The paper categorizes and evaluates modern solutions, including cryptographic schemes (e.g., ho-

momorphic encryption, differential privacy), access control mechanisms (ABAC, IAM), secure multi-party computation 

(SMPC), AI-based analytics for threat detection and privacy-preserving model training, and blockchain applications for decen-

tralized access control and data integrity. A comparative framework illustrates the strengths and limitations of these methods 

across different distributed environments. The review concludes with a call for multi-layered, convergent security strategies to 

meet the growing demands of data protection in distributed big data ecosystems. 
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1. Introduction 

Organizations increasingly rely on distributed systems 

(cloud, fog, and edge platforms) to process big data, which 

often includes sensitive personally identifiable information 

(PII). Ensuring data security and privacy in these environ-

ments has become paramount. Without proper safeguards, 

large-scale analytics can exploit personal data and invade 

privacy [1,2]. Regulations like the EU GDPR and California 

CCPA underscore the importance of protecting PII in big 

data processing [3,4]. In the last five years, there have been 

significant advances in techniques to secure critical data in 

distributed systems. This review summarizes recent devel-

opments in data security methods for big data—focusing on 

approaches that safeguard PII—such as modern cryptograph-

ic mechanisms, access control models, secure multi-party 

computation protocols, AI-driven methods, and blockchain-

based systems. We highlight how these techniques provide 

confidentiality and privacy, their strengths/weaknesses, and 

their applicability across cloud, fog, and edge computing 

environments. 

1.1. Cryptographic Mechanisms for Data Protection 

Encryption is a foundational tool for protecting data con-

fidentiality in distributed systems [5]. At minimum, data is 

encrypted at-rest in storage and in-transit over networks to 

prevent unauthorized access. Beyond basic encryption, recent 

research emphasizes fine-grained cryptographic schemes. For 

example, Attribute-Based Encryption (ABE) allows tying 

decryption to policies (attributes of users or data), enabling 

encrypted access control so that only authorized parties can 

decrypt specific data [6]. Such approaches are popular for 

sensitive records (e.g. medical or financial data) in the cloud, 

as they ensure that even if data is intercepted or stored on 

untrusted infrastructure, it remains confidential except to 

those satisfying the policy [7]. 

Another major advance is homomorphic encryption, 

which permits computations on encrypted data without de-

crypting it [8]. Fully Homomorphic Encryption (FHE) 

schemes have matured to support arbitrary computations on 

ciphertexts, albeit with performance overhead. In practice, 

somewhat homomorphic schemes (supporting limited opera-

tions) or partial homomorphism (e.g. Paillier’s additive ho-

momorphic encryption) are often used for big data analytics 

[8]. These enable scenarios like performing aggregate queries 

or machine learning on encrypted datasets, ensuring that raw 

PII is never exposed to processing nodes. For instance, in 

distributed IoT/fog environments, user data can be encrypted 

at the source and processed by fog nodes using homomorphic 

encryption, preserving privacy at the cost of higher computa-

tion. 

Data anonymization techniques complement cryptog-

raphy by removing or masking personal identifiers. Ap-

proaches such as pseudonymization, k-anonymity, l-

diversity, and differential privacy introduce uncertainty or 

remove identifying details from big data while retaining 

analytical value [9]. In fact, GDPR explicitly recommends 

pseudonymization/anonymization to protect personal data 

[3]. Differential privacy (DP), in particular, adds calibrated 

noise to query results or machine learning model updates, 

providing mathematical privacy guarantees that individual 

records (PII) cannot be inferred [9]. Large-scale implementa-

tions in the last few years (by industry and research) use DP 

to publish aggregate statistics or to train models on sensitive 

data with provable privacy loss bounds. However, anony-

mization alone can be insufficient if data can be linked or if 

attackers use AI to de-anonymize records, so it is often used 

in combination with other security measures. 

https://ce.journal.satbayev.university/
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1.2. Access Control and Identity Management 

While encryption protects data contents, access control 

policies determine who can access data in the first place. 

Traditional role-based access control (RBAC) is often insuf-

ficient for big data environments, which involve diverse 

users and dynamic access patterns. In the past five years, 

more fine-grained access control models have been adopted. 

Attribute-Based Access Control (ABAC) allows defining 

access rules based on attributes of users, resources, or con-

text (e.g., time, location) [10]. This flexibility is crucial when 

governing large datasets with varying sensitivity levels. For 

example, a policy might allow data scientists to see aggregat-

ed trends from a dataset but not individual-level PII, or only 

permit healthcare clinicians to access patient data for patients 

under their care. Such policies can be enforced in big data 

platforms (like cloud data lakes or distributed file systems) 

using access control engines (e.g., Apache Ranger or Sentry 

in Hadoop ecosystems). ABAC combined with ABE (en-

crypting data such that only users with certain attributes have 

keys) has been shown to effectively protect sensitive cloud-

hosted data like electronic health records [6,10]. 

Modern distributed systems also incorporate identity and 

access management (IAM) frameworks to handle authentica-

tion, authorization, and auditing at scale. Single sign-on and 

federated identity (using standards like OAuth/OIDC) are 

common in cloud environments, ensuring users are strongly 

authenticated before they access any data [11]. Moreover, the 

principle of least privilege is applied to restrict data access to 

the minimum necessary for each role or task, reducing expo-

sure of PII. 

An emerging aspect of access control is user consent and 

data governance. Users (data subjects) increasingly have a 

say in who accesses their personal data and for what purpose, 

as mandated by privacy regulations. Systems are being de-

signed to record and respect consent preferences – effectively 

treating consent as an access control rule. For instance, a user 

might consent to their data being used for medical research 

but not for marketing. Ensuring these preferences are en-

forced requires robust policy frameworks. In some proposals, 

consent policies are stored immutably (e.g., via blockchain – 

see next section) to prevent tampering [12]. Access control 

models have evolved to incorporate such consent manage-

ment, purpose limitations, and dynamic conditions (some-

times called usage control or UCON). These approaches help 

ensure that critical data like PII is only accessed by author-

ized parties under approved conditions, significantly mitigat-

ing the risk of insider threats or unauthorized use. 

1.3. Secure Multi-Party Computation (SMPC) Tech-

niques 

Often, multiple organizations or nodes wish to collabora-

tively analyze data without revealing their individual datasets 

(for example, multiple hospitals pooling insights without 

sharing patient records). Secure Multi-Party Computation 

(SMPC) provides a cryptographic framework for this scenar-

io [13]. SMPC allows a group of parties to jointly compute a 

function over their private inputs without any party having to 

expose its own data to others. In essence, it ensures that each 

party learns only the final computation result (and whatever 

can be inferred from it), but nothing else about the other 

parties’ inputs. 

Over the last few years, SMPC techniques have advanced 

from theory towards practical deployment in big data con-

texts. Classic SMPC protocols are based on primitives like 

secret sharing (e.g., Shamir’s scheme) or garbled circuits 

(Yao’s protocol), and more recent ones incorporate homo-

morphic encryption as well [13]. These have been imple-

mented in various frameworks (Sharemind, SPDZ, PySyft, 

etc.), some of which are optimized for handling large data 

volumes and distributed computation. A notable develop-

ment is the integration of SMPC with distributed machine 

learning and analytics workflows. For example, federated 

learning (discussed below) can use SMPC to aggregate mod-

el updates from multiple parties in an encrypted or secret-

shared form [14]. This ensures that even the aggregator or 

coordinating server cannot see individual contributions, thus 

preserving privacy. In the finance sector, SMPC has been 

used for joint fraud detection across banks without exposing 

customer data to competitors. In biomedical research, SMPC 

enables joint analysis of patient data from different hospitals 

while keeping patient records confidential. 

Despite progress, SMPC protocols can be computational-

ly intensive and communication-heavy, which historically 

limited their practical use for big data [13]. Recent work has 

focused on improving efficiency (e.g., by tailoring protocols 

to specific tasks, using hybrid approaches that switch be-

tween SMPC and lighter-weight methods as needed). There 

is also interest in combining SMPC with hardware-assisted 

security (like trusted execution environments) to reduce 

overhead. For instance, confidential computing using secure 

enclaves can perform parts of the computation in isolation, 

while SMPC handles the most sensitive steps – this hybrid 

can sometimes achieve a better performance-security 

tradeoff. Overall, secure multi-party computation adds a 

powerful capability: it enables collaborative analytics on 

sensitive, distributed data without violating privacy. As tools 

improve, we see SMPC increasingly applied in cloud and 

cross-cloud workflows, multi-cloud federations, and edge 

scenarios where data cannot be centrally aggregated due to 

privacy regulations or trust issues. 

2. Materials and methods 

2.1. AI-Based Methods for Security and Privacy 

Advances in AI and machine learning are being leveraged 

both to enhance security and to preserve privacy in distribut-

ed big data systems. One major application is using AI for 

threat detection and anomaly analysis. Distributed systems 

produce massive logs and metrics; Big Data Security Analyt-

ics involves applying machine learning to this telemetry to 

detect intrusions, data exfiltration attempts, or misconfigura-

tions. Modern intrusion detection systems (IDS) use deep 

learning models to identify complex attack patterns in net-

work traffic or system logs that traditional rule-based sys-

tems might miss [15]. For example, researchers have applied 

deep neural networks and ensemble learning to IoT networks 

and achieved high accuracy in detecting attacks like DDoS or 

malicious routing behavior. Such AI-based IDS can operate 

across edge devices and cloud services, learning normal vs. 

abnormal patterns. Federated learning has even been pro-

posed for IDS, allowing a collective model to be trained 

across distributed nodes’ data without centralizing sensitive 

logs [15]. The strength of AI here is its ability to adapt to 

new threats (via retraining) and to handle the scale of big 

data environments, though it requires large labeled datasets 

and careful tuning to avoid false positives. 
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AI is also used for data classification and leakage preven-

tion. Machine learning models can automatically classify or 

tag data based on sensitivity (PII detection), helping to en-

force policies. For instance, natural language processing 

(NLP) models can scan documents or messages in a big data 

pipeline to flag if they contain names, addresses, or other PII, 

so that additional encryption or redaction can be applied. 

This dynamic data loss prevention (DLP) aided by AI helps 

catch inadvertent exposures of sensitive data [16]. 

On the flip side, AI techniques themselves are being tai-

lored to preserve privacy. A prominent example is Federated 

Learning (FL) – an AI training paradigm introduced in recent 

years that avoids centralizing raw data. In FL, models (such 

as a neural network) are trained across distributed devices or 

silos: each node (e.g., a mobile phone or an edge server) 

computes an update to the global model using its local data, 

and only these updates (gradients) are sent to a central server 

to be aggregated. This means the raw PII (user data) remains 

on the local devices. FL has been adopted in scenarios like 

smartphone keyboard prediction (Gboard) and is being ex-

plored in healthcare and finance so that organizations can 

jointly train models without sharing their raw datasets. By 

design, FL provides a degree of privacy through data mini-

mization (only model parameters are shared) [16]. However, 

research has shown that even model updates can leak infor-

mation about the underlying data (through inference attacks), 

so recent developments combine FL with other techniques 

like differential privacy and SMPC to harden it [9,13]. 

Another AI-driven privacy method is the use of synthetic 

data generation. Using generative models (like GANs or 

variational autoencoders), one can create artificial datasets 

that mirror the statistical properties of real data without con-

taining real PII. This synthetic data can be shared or used for 

analytics as a privacy-preserving substitute. In the last few 

years, tools to generate synthetic medical records, financial 

transactions, or mobility data have improved. They allow 

data scientists to train AI models or test algorithms without 

risking exposure of actual personal data [16]. The caveat is 

ensuring the synthetic data is sufficiently representative for 

utility but not too realistic such that it might re-identify real 

individuals (a known challenge under study). 

AI for access control is an emerging area as well. Tech-

niques like behavior-based authentication use machine learn-

ing to continuously verify user identity based on patterns 

(e.g., typing behavior or network usage profiles). Moreover, 

AI can assist administrators by analyzing access logs to rec-

ommend least-privilege role adjustments or to detect unusual 

data access (potential insider threat). Some research has 

explored reinforcement learning to adaptively adjust access 

control policies in cloud systems for optimal balance of secu-

rity and usability [15]. 

In summary, AI-based methods contribute to data securi-

ty by intelligently monitoring and responding to threats, and 

by enabling privacy-preserving analytics (through FL, DP, 

synthetic data). They are not a silver bullet—AI models 

themselves require protection (to prevent adversarial manipu-

lation or privacy leakage)—but they have become indispen-

sable in managing the complexity of distributed big data 

environments. 

3. Results and discussion 

3.1. Blockchain-Based Security Solutions 

Blockchain and distributed ledger technologies have 

gained traction as tools for enhancing security in multi-

stakeholder data sharing scenarios. A blockchain’s properties 

of decentralization, immutability, and transparency are at-

tractive for ensuring integrity and auditability of data transac-

tions [17]. For example, a consortium of organizations might 

use a permissioned blockchain to log all data accesses or 

transfers among them: once recorded, these logs cannot be 

altered, providing a trustworthy audit trail of who did what 

with the data. This immutability is particularly valuable for 

compliance and for detecting tampering or unauthorized 

changes to critical data. 

However, a naive use of blockchain can conflict with pri-

vacy, since data on a blockchain is replicated across nodes 

and typically transparent to participants. Thus, recent devel-

opments focus on privacy-preserving blockchain designs. 

One simple practice is to avoid putting raw PII on-chain; 

instead, store references or cryptographic hashes on the 

blockchain and keep the actual data encrypted off-chain. 

Even when data or metadata must be on-chain, techniques 

like cryptographic accumulators, zero-knowledge proofs, and 

commitment schemes are employed to hide sensitive content 

[18]. In fact, many blockchain-based systems now integrate 

encryption and access control directly: e.g., data might be 

encrypted with ABE and the decryption key shares only 

released to authorized parties via on-chain transactions 

[6,18]. Studies show a variety of encryption methods being 

used in blockchain privacy solutions, including standard 

public-key encryption, homomorphic encryption for compu-

tations, proxy re-encryption to transfer decryption rights, and 

ABE for fine-grained policy enforcement. Additionally, 

classic privacy techniques like anonymization (e.g., remov-

ing or masking identifiers) and k-anonymity have been 

adapted to blockchain contexts to reduce linkability of trans-

actions to individuals. 

One prominent application is decentralized identity and 

consent management. Blockchain can give individuals more 

control over their personal data by acting as a decentralized 

access-control manager. For instance, Zyskind et al. pio-

neered a personal data management system where a block-

chain ledger tracks who has permission to access your data, 

and users can grant or revoke access via smart contracts [12]. 

The blockchain enforces that no unauthorized party can ac-

cess data without a recorded consent transaction, effectively 

making the user the ultimate authority over their PII. In such 

systems, if a third-party (say, a research organization) wants 

to use a person’s data, it must obtain a permission token on 

the blockchain that the user can approve or deny. This ap-

proach aligns with the concept of self-sovereign identity 

(SSI) and consent under regulations: individuals retain own-

ership of their identity attributes and share them selectively. 

Blockchain smart contracts can also implement complex 

access rules and execute data processing logic with built-in 

auditing. For example, in healthcare, a smart contract could 

automatically ensure that a researcher’s query only retrieves 

anonymized data, and log the query details immutably [18]. 

Blockchain’s transparency helps in accountability – partici-

pants know that any access to sensitive data will be visible 

on the ledger. Meanwhile, privacy enhancements like con-

sent tokens and decentralized identifiers (DIDs) ensure that 

PII is not exposed on the ledger itself. Modern systems 

(2020–2025) often use permissioned blockchains for these 

purposes, meaning only trusted organizations run the nodes; 
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this provides an extra layer of access control and perfor-

mance suitable for enterprise use, while still leveraging 

blockchain security properties. 

Another use case is securing data integrity and prove-

nance: when data is collected and processed across edge and 

cloud, blockchain can timestamp and hash each step, so any 

alteration of data can be detected. This is critical for critical 

data (e.g., sensor readings in power grids or logs in supply 

chain): blockchain ensures the provenance and integrity of 

big data streams, indirectly protecting against tampering that 

could also affect privacy or safety. 

In summary, blockchain-based solutions in data security 

provide distributed trust – no single central party controls the 

data, which can reduce the risk of insider abuse or single-

point breaches. They ensure integrity and enable auditable 

sharing of data among stakeholders. To reconcile this with 

privacy, these solutions incorporate additional cryptographic 

layers, off-chain storage, and consent mechanisms [18]. The 

result is an ecosystem where sensitive data can be shared or 

computed on in a controlled, trust-minimized way: partici-

pants trust the protocol (cryptography + consensus) rather 

than each other. Blockchain approaches are still evolving 

(and can introduce complexity and performance overhead), 

but they have shown promise for scenarios like cross-

organizational data collaboration, supply chain data sharing, 

and IoT networks where a central authority is undesirable. 

3.2. Comparison of Approaches and Applicability 

Different security techniques offer varying benefits and 

trade-offs. Table 1 compares the key approaches discussed, 

highlighting their strengths, weaknesses, and recent usage in 

distributed big data systems. 

Table 1. Comparison of data security approaches (2019–2024) – strengths, limitations, and example applications in distributed big 

data systems. No single approach is sufficient alone; layered combinations are employed in practice for defense-in-depth 

Approach Key Techniques Strengths Weaknesses Example Uses 

Cryptographic 

(Encryption, DP, etc.) 

– Symmetric & Pub-

lic-Key Encryption– 

Homomorphic En-
cryption [8] 

– Attribute-Based 

Encryption (ABE) [6 
]– Differential Privacy 

(noise addition) [9] 

– Zero-Knowledge 
Proofs 

• Strong confidentiality and 

privacy guarantees (mathe-

matically proven). 
• Prevents data leakage even 

if infrastructure is compro-

mised. 
• Fine-grained control possi-

ble (e.g., ABE policies) [6]. 

• Computational overhead can be 

high (e.g., FHE is slow) [8]. 

• Complex key management and 
user friction. 

• Homomorphic/SMPC methods 

may not scale easily to very large 
datasets in real-time [13]. 

• Cloud data storage (encrypt PII 

at rest). 

• Outsourced computations on 
sensitive data (using homomor-

phic encryption or SMPC) [13]. 

• Sharing data across orgs with 
ABE keys restricted to roles [6]. 

Access Control 

(IAM, ABAC) 

– Role/Attribute-

Based Access Control 

[10] 

– Identity Federation 

(OAuth2, SAML) [11] 
– Policy engines 

(XACML) 

– User consent man-
agement [12] 

• Ensures only authorized 

users/processes access data 

(policy-driven). 

• Flexible policies (attributes, 

context) for fine-grained 
decisions [10]. 

• Can integrate with user 

consent and legal require-
ments [12]. 

• Complex policies can be hard to 

manage at scale (risk of misconfigu-

ration). 

• Insider threats if an authorized 

user abuses access. 
• Doesn’t protect data after access 

(needs combination with encryption 

or auditing). 

• Enterprise cloud apps (using 

ABAC for multi-tenant data). 

• Healthcare data sharing with 

patient consent policies [12]. 

• Data lakes with tiered access 
levels (general vs sensitive 

fields). 

Secure Multi-Party 

(Collaborative Com-
putation) 

– Secret Sharing 

protocols 
– Garbled Circuits 

(Yao) 

– Multi-party Homo-
morphic schemes 

– Federated Learning 

aggregation [14] 

• Enables joint analysis of 

data from multiple sources 
without exposing PII [13]. 

• Strong privacy – only 

computation output is re-
vealed, raw data remains 

private. 

• Facilitates compliance in 
multi-org analytics (e.g., 

GDPR-compliant cross-

border data use). 

• High performance cost (compute 

and network overhead), especially 
as number of parties or data size 

grows [13]. 

• Protocols are complex to imple-
ment; potential for subtle bugs 

affecting security. 

• Usually yields only final results – 
limited interactivity or exploratory 

analysis on the fly. 

• Joint fraud detection across 

banks (no raw customer data 
shared). 

• Multi-hospital medical research 

on patient data with privacy. 
• Federated IoT analytics com-

bining data from edge devices 

[14]. 

AI-Based (ML/DL 
for Security & Priva-

cy) 

– Anomaly detection 
(clustering, SVM, 

deep learning) [15] 

– Intrusion detection 
systems (DL-based) 

[15] 

– Federated Learning 
(for model training) 

[14] 
– Generative models 

for synthetic data [16] 

• Can detect complex pat-
terns and new threats auto-

matically [15]. 

• Scales to big data (machine 
learning thrives on more 

data). 

• Enables privacy-preserving 
model training and data 

sharing (FL, synthetic data) 
without raw data exchange 

[14,16]. 

• Requires large datasets for train-
ing (cold start problem). 

• ML models can be opaque («black 

box»), leading to trust and explain-
ability issues. 

• Adversaries may evade or poison 

AI models; models can leak infor-
mation if not secured (model inver-

sion attacks) [15]. 

• Real-time security monitoring 
in cloud (anomaly detection in 

logs). 

• Federated learning for mobile 
keyboard suggestions (user 

privacy maintained) [14]. 

• Synthetic data for sharing with 
third-party analytics teams [16]. 

Blockchain-Based 

(Decentralized Ledg-
er) 

– Distributed Ledger 

(append-only logs) 
[17] 

– Smart Contracts for 

access control 
– Crypto: hashing, 

PKI, zero-knowledge 

on chain [18] 
– Decentralized Identi-

fiers (DIDs) 

• Tamper-proof logging of 

data transactions (provides 
integrity and auditability) 

[17]. 

• Removes need for a trusted 
central intermediary – con-

sensus ensures trust. 

• Users can have greater 
control (self-sovereign 

identity, consent on block-

chain) [12]. 

• Privacy not inherent – needs 

additional layers to avoid exposing 
PII [18]. 

• Throughput and latency limita-

tions for big data volumes (block-
chain adds overhead). 

• Interoperability and standardiza-

tion still evolving; complex to 
integrate with legacy systems. 

• Cross-company data sharing in 

supply chains (using blockchain 
to log and enforce permissions). 

• Healthcare data exchange with 

patient-managed access via smart 
contracts [12]. 

• IoT sensor networks logging 

readings to blockchain for integ-
rity, with off-chain storage for 

actual data [18]. 
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In terms of applicability to different environments: 

• Cloud – With abundant compute and storage, cloud 

platforms can leverage heavy-duty security mechanisms 

(complex encryption, comprehensive logging, AI analytics 

on security data) [5,6,8,14,15,17]. Most approaches are very 

applicable: e.g., homomorphic encryption can run on power-

ful cloud servers [8]; fine-grained access control and IAM 

are native to cloud IAM services [10,11]; blockchain can be 

deployed as permissioned ledgers among cloud services 

[17,18]. The cloud’s centralized nature makes enforcement 

easier (but also is a high-value breach target, so strong secu-

rity is critical). Cloud providers also increasingly offer built-

in tools (KMS for key management, confidential computing 

instances, etc.) to facilitate these security measures. 

• Fog – Fog computing (intermediary nodes between 

cloud and edge) has moderate resources and often aggregates 

data from many edge devices. Techniques like lightweight 

encryption and partial homomorphic operations are feasible 

at fog nodes [8], and they often act as policy enforcement 

points for access control coming from the edge [10]. Fog 

nodes might run local anomaly detection on IoT data streams 

before forwarding to cloud [15]. Because fog nodes are usu-

ally distributed and possibly operated by different stakehold-

ers, blockchain solutions are attractive here to coordinate 

trust among them [17,18]. Fog environments benefit from 

security approaches that balance performance and privacy, 

such as performing initial data filtering or anonymization at 

the fog layer to reduce risk before data reaches the cloud [9]. 

• Edge/IoT – Edge devices (sensors, smartphones, IoT 

gateways) have limited computing power and may operate 

intermittently offline. Security methods at the edge must be 

efficient and often decentralized. Lightweight cryptography 

(stream ciphers, ECC-based encryption) is used to secure data 

at collection [5]. Federated learning is particularly apt for edge 

scenarios: it moves model computation to the data rather than 

data to the computation, which suits the privacy and band-

width constraints of edge devices [14,16]. AI-based local 

anomaly detection can guard individual devices [15]. Howev-

er, heavy cryptographic protocols like full SMPC or FHE are 

usually impractical directly on tiny devices [13]; instead, edges 

might share secret-shared data or use enclave hardware to 

assist in secure computation, deferring heavier tasks to fog or 

cloud. Physical security is also a concern at edge (devices can 

be captured), so embedding hardware roots-of-trust and regu-

larly rotating keys is important [5]. In summary, edges require 

lightweight, autonomous security – techniques that can func-

tion with minimal resources and supervision. 

Ultimately, a holistic strategy is used in modern distribut-

ed systems: for example, an IoT deployment might encrypt 

sensor data at the edge [5], aggregate and partially analyze it 

at a fog node using a secure multi-party protocol [13], and 

store results in a cloud database protected by ABAC [10] and 

monitored by AI for anomalies [15], with a blockchain log-

ging all data accesses and user consents [12,17]. By combin-

ing approaches, organizations can compensate for one meth-

od’s weaknesses with another’s strengths. 

4. Conclusions 

Protecting critical data in distributed big data systems is a 

multi-faceted challenge that has driven numerous innovations 

in recent years. Techniques like advanced encryption (e.g., 

ABE [6], homomorphic encryption [8]) and secure multi-

party computation [13] directly safeguard data confidentiali-

ty, allowing analytics on sensitive data without exposing PII. 

Rigorous access control models [10] and consent mecha-

nisms [12] ensure data is only used in approved ways, ad-

dressing the human and policy aspects of security. Artificial 

intelligence is increasingly employed both to fortify defenses 

(through intelligent threat detection [15]) and to enable pri-

vacy-preserving data utilization (through federated learning 

[14] and data synthesis [16]). Meanwhile, blockchain and 

decentralized architectures offer new ways to enforce trust, 

integrity, and user-centric control in distributed environments 

that lack a central authority [17,18]. 

These developments illustrate that no single technology 

suffices for comprehensive data security. Instead, a layered 

approach («defense in depth») is essential – encryption and 

anonymization [9] to protect data contents, access control 

[10] to govern permissions, AI [15] to monitor and respond 

to threats, and robust audit logs (often blockchain-backed 

[17]) to ensure accountability. The state-of-the-art solutions 

discussed are being actively integrated into cloud services, 

big data platforms, and IoT frameworks, though challenges 

remain in balancing security with system performance and 

usability. Emerging standards and frameworks (from NIST, 

IEEE, etc.) are beginning to codify these best practices, push-

ing for architectures that are secure-by-design for big data. In 

the coming years, we can expect further convergence of these 

technologies – for example, AI models trained on encrypted 

data [14], or blockchain systems coordinating SMPC compu-

tations [13,18] – to meet the ever-growing demand for deriv-

ing value from big data while fiercely protecting PII and 

sensitive information. 
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Таратылған үлкен деректер жүйелеріндегі деректердің 

қауіпсіздігі: PII-ді қорғау 
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Аңдатпа. Бұл шолу үлкен деректерді өңдеуде қолданылатын таратылған жүйелер үшін деректерді қорғау 

әдістемелеріндегі соңғы жетістіктерді зерттейді. Бұлтты, тұманды және шеткі есептеулердің таралуымен жеке 

сәйкестендірілетін ақпаратты (PII) қорғау басты басымдыққа айналды. Мақалада криптографиялық схемаларды (мысалы, 

гомоморфты шифрлау, дифференциалды құпиялылық), қол жеткізуді басқару механизмдерін (ABAC, IAM), қауіпсіз 

көпжақты есептеулерді (SMPC), қауіптерді анықтау және құпиялылықты сақтау үшін жасанды интеллектке негізделген 

аналитиканы қоса алғанда, заманауи шешімдерді санаттарға бөлу және бағалау қарастырылған. Модельдерді оқыту, 

сондай-ақ орталықтандырылмаған қол жеткізуді басқару және деректердің тұтастығын қамтамасыз ету үшін блокчейн 

қолданбалары. Салыстырмалы құрылым осы әдістердің әр түрлі үлестірілген ортадағы күшті және шектеулерін 

көрсетеді. Шолу таратылған үлкен деректер экожүйелеріндегі деректерді қорғаудың өсіп келе жатқан талаптарын 

қанағаттандыру үшін көп деңгейлі, конвергентті қауіпсіздік стратегияларын әзірлеуге шақырумен аяқталады. 

Негізгі сөздер: таратылған жүйелер, үлкен деректер қауіпсіздігі, жеке басын куәландыратын ақпарат (PII), 

гомоморфты шифрлау, дифференциалды құпиялылық, қол жеткізуді басқару, атрибуттарға негізделген шифрлау, 

федеративті оқыту, қауіпсіз көпжақты есептеулер, блокчейн, бұлтты есептеулер, тұманға қарсы есептеулер, озық 

есептеулер, жасанды интеллектке негізделген қауіпсіздік. 

Безопасность данных в распределенных системах больших 

данных: защита персональных данных 

А. Махамбет*, А. Молдагулова 

Satbayev University, Алматы, Казахстан 

*Автор для корреспонденции: aluamakhambet@gmail.com 

Аннотация. В обзоре рассматриваются последние достижения в области методологий обеспечения безопасности 

данных для распределенных систем, используемых при обработке больших данных. С распространением облачных, 

туманных и пограничных вычислений защита персонально идентифицируемой информации (PII) стала ключевым прио-

ритетом. В статье классифицируются и оцениваются современные решения, включая криптографические схемы (напри-

мер, гомоморфное шифрование, дифференциальная конфиденциальность), механизмы контроля доступа (ABAC, IAM), 

безопасные многосторонние вычисления (SMPC), аналитику на основе ИИ для обнаружения угроз и обучения моделей с 

сохранением конфиденциальности, а также блокчейн-приложения для децентрализованного контроля доступа и целост-

ности данных. Сравнительная схема иллюстрирует сильные стороны и ограничения этих методов в различных распреде-

ленных средах. Обзор завершается призывом к разработке многоуровневых, конвергентных стратегий безопасности для 

удовлетворения растущих требований к защите данных в распределенных экосистемах больших данных. 

Ключевые слова: распределенные системы, безопасность больших данных, персонально идентифицируемая ин-

формация (PII), гомоморфное шифрование, дифференциальная конфиденциальность, контроль доступа, шифрование 

на основе атрибутов, федеративное обучение, безопасные многосторонние вычисления, блокчейн, облачные вычисле-

ния, туманные вычисления, краевые вычисления, безопасность на основе ИИ. 
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