Computing & Engineering

SATBAYEV
UNIVERSITY Volume 2 (2024), Issue 2, 1-7

https://doi.org/10.51301/ce.2024.i2.01

Secure File Storage on Cloud Using Hybrid Cryptography

E. Saginayev®, A. Niyazov, A. Razaque, Zh. Kalpeyeva, A. Urazgaliyeva
Satbayev University, Almaty, Kazakhstan
*Corresponding author: saginaev.eyn@mail.ru

Abstract. This paper addresses the critical challenge of unau- thorized access to sensitive data stored on cloud platforms.
As the volume of such data continues to grow, ensuring its confidentiality, integrity, and availability has become increasingly
important. The research proposes a secure cloud storage solution that integrates advanced cryptographic techniques. Specifical-
ly, the study utilizes the Advanced Encryption Standard (AES- 256) for efficient data encryption and the RSA algorithm for
secure key management, ensuring that only authorized users can access the data. To further enhance security, the Secure Hash
Algorithm (SHA-256) is employed to verify data integrity by generating hash values before encryption and after decryption.
The proposed solution demonstrates improved protection against unauthorized access and data tampering, providing a robust
framework for cloud-based file storage. Through the integration of these methodologies, this research contributes to the ongo-
ing efforts to secure sensitive data in cloud environments, highlighting the importance of adopting advanced cryptographic
measures in the face of evolving cybersecurity threats.

Keywords: cloud security, hybrid cryptography, AES-256, RSA Algorithm, SHA-256, data integrity, secure cloud storage.

1. Introduction

The proliferation of cloud computing has revolutionized
data storage and management, offering unprecedented scala-
bility and flexibility for organizations worldwide. However,
this shift towards cloud-based solutions has introduced sig-
nificant security challenges, particularly concerning unau-
thorized access to sensitive data stored on cloud platforms.
Studies have shown that cloud environments are vulnerable
to cyberattacks and data breaches due to their multi-tenant
architecture and shared resources [1]. Traditional encryption
methods, such as DES and 3DES, are no longer sufficient to
mitigate these risks, necessitating the adoption of advanced
cryptographic approaches [2].

Symmetric encryption algorithms, like AES, are highly
efficient for encrypting large datasets but present challenges
in key management [3]. Conversely, asymmetric algorithms,
such as RSA, address key distribution issues but are compu-
tationally intensive [4]. Hybrid cryptography, which com-
bines these techniques, has emerged as a robust solution for
secure data storage. For instance, combining AES for data
encryption with RSA for secure key exchange offers both
efficiency and security, making it a popular choice for cloud
environments [5-6].

Moreover, cryptographic hashing algorithms, such as
SHA-256, are widely used to ensure data integrity by detect-
ing unauthorized modifications during transmission and
storage [7]. By integrating these techniques, researchers aim
to address the limitations of isolated methods, providing
comprehensive security solutions. The integration of multi-
factor authentication (MFA) further strengthens these
frameworks by enhancing user authentication and reducing
vulnerabilities associated with compromised credentials [8].

This research builds on the advancements in hybrid cryp-
tographic systems to develop a secure file storage framework

© 2024. E. Saginayev, A. Niyazov, A. Razaque, Zh. Kalpeyeva, A. Urazgaliyeva
https://ce.journal.satbayev.university/. Published by Satbayev University

for cloud computing, emphasizing the importance of combin-
ing AES, RSA, and SHA-256 to ensure data confidentiality,
integrity, and authentication.

Security

Secure Hash AGOtNm | Voni,, Encrypled O} N
—

Secure Cloud Storage.

SHA-256: Data integrity Check a
a

|
Encrypied AES Key
1

Rwvest-Shamir-Ademan |
Agorttm

.

.RSA' Key Managemant

Figure 1. Hybrid encryption architecture for secure data stor-
age in the cloud

1.1. Abbreviations

AES: Advanced Encryption Standard;
RSA: Rivest-Shamir—Adleman Algorithm;
SHA-256: Secure Hash Algorithm 256-bit;
DES: Data Encryption Standard;

3DES: Triple Data Encryption Standard;
MFA: Multi-Factor Authentication;

ECC: Elliptic Curve Cryptography.

2. Materials and methods

2.1. Research novelty and refined contribution

This research introduces a novel hybrid cryptographic
framework that synergistically combines symmetric and
asymmetric encryption techniques with cryptographic hash-

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://ce.journal.satbayev.university/
http://creativecommons.org/licenses/by/4.0/
mailto:saginaev.eyn@mail.ru
https://ce.journal.satbayev.university/index.php/journal/article/view/1282

E. Saginayev et al. (2024). Computing & Engineering, 2(2), 1-7

ing to secure cloud-based file storage systems comprehen-
sively. Unlike previous studies that often focus on a single
cryptographic method, our proposed solution integrates AES-
256 for data encryption, RSA for secure key management,
and SHA-256 for data integrity verification.

Refined Contributions:

Unified Security Model: By employing a combination of
AES-256, RSA, and SHA-256, we provide confidentiality,
key security, and data integrity all in one framework.

Efficiency-Driven Design: We demonstrate that the hy-
brid approach can encrypt large datasets efficiently (due to
AES) while leveraging RSA only for key management, thus
minimizing computational overhead.

Scalability and Adaptability: The model is designed to
accommodate various file sizes and can be integrated into
existing cloud architectures with minimal modifications.
Integrity Assurance: Incorporating SHA-256 hashing ensures
real-time detection of tampering, strengthening trust in cloud
storage systems.

2.2. Proposed hypothesis and proof outline

Hypothesis Statement: «The proposed hybrid cryptograph-
ic framework (AES-256 + RSA + SHA-256) ensures a more
secure and computationally efficient mechanism for cloud file
storage compared to using purely symmetric or purely asym-
metric cryptography, while maintaining robust data integrity».

A. Proof Sketch and Mathematical Formulation

We present a simplified proof approach, focusing on se-
curity and computational efficiency.

1) Security:

Let A denote the symmetric encryption algorithm (AES-
256) and B denote the asymmetric encryption algorithm
(RSA). Security of AES-256 relies on the hardness of recov-
ering the key K(AES) from ciphertext E(F) without brute
force attacks exceeding feasible computational limits. RSA
security relies on the intractability of factoring large integers
(at least 2048 bits).

Hence, an adversary must break both A and B to retrieve
the plaintext file F. Probability of success is exponentially
small if both algorithms are configured with standard securi-
ty parameters.

Hypothetical Vulnerability Rating of Cryptographic Methods
T

2.7

Low, 5 = High)

1z

Vulnerability Rating (0
5

AES-256 RSA SHA-256 ECC 3DES
Cryptographic Methods

Figure 2. An illustrative chart comparing hypothetical vulner-
ability ratings for various cryptographic methods

As shown in Figure 2, each cryptographic method may
exhibit a different level of vulnerability.

2) Computational Efficiency:

Define Ta(n) as the time complexity of encrypting a file of
size n bits with a symmetric key, and Tg as the time for en-
crypting a fixed-size AES key with an asymmetric algorithm.

Because n can be large (megabytes or gigabytes), sym-
metric encryption dominates the total encryption time, i.e.,

Tencrypt = Ta(n) + Ta(keysize), (@)

where TB(keysize) is relatively small because it handles
only a short key (e.g., 256 bits for AES).

Thus, the hybrid scheme is O(n) for large files, similar to
pure AES, with negligible overhead from RSA key encryption.

3) Data Integrity:

Using SHA-256, define the hash function H such that

hash = H(E(F)) (Jhash| = 256 bits))

The collision resistance of SHA-256 implies that finding
two different ciphertexts E(F) and E’'(F) that produce the
same hash is computationally infeasible.

Therefore, any tampering or unauthorized modifications to

E(F) will be detected during integrity checks.

Combining these arguments, we conclude that the pro-
posed hybrid scheme is both secure (due to combined hard-
ness of AES-256 and RSA) and computationally efficient
(dominated by linear-time symmetric encryption).

2.3. Problem identification and significance

The critical issue addressed in this research is the vulnera-
bility of cloud-stored data to unauthorized access and tamper-
ing due to inadequate encryption practices and weak key man-
agement. As organizations increasingly rely on cloud services,
the potential impact of data breaches escalates, leading to
financial losses, reputational damage, and legal consequences.

Key points include:

- Ensuring that confidential data remains secure from un-
authorized entities.

- Preserving the trust of clients and stakeholders by
demonstrating a commitment to robust data security practic-
es. Adhering to legal and regulatory requirements regarding
data protection and privacy.

- Preventing disruptions caused by security breaches that
can affect organizational operations.

2.4. Problem solution

The proposed solution for secure cloud file storage leverages
a hybrid cryptographic framework that effectively addresses the
challenges of data security and performance. This model inte-
grates symmetric and asymmetric cryptography, ensuring both
rapid data processing and robust key management.

In the encryption phase, sensitive files are encrypted us-
ing a symmetric algorithm, specifically AES-256, known for
its efficiency in handling large datasets. Following this, the
sym- metric key utilized for AES encryption is securely
encrypted with RSA. This two-tiered approach safeguards
the key ex- change process, protecting it from potential inter-
ception by unauthorized parties.

To further enhance the security of stored data, the solu-
tion incorporates integrity checks through cryptographic
hashing (SHA-256). This mechanism ensures that any unau-
thorized alterations to the data can be detected promptly, thus
maintaining data integrity throughout its lifecycle. By com-
bining these methodologies, the proposed solution establish-
es a comprehensive framework that meets the dual demands
of speed and security in modern cloud environments.

2.5. Related works

The advent of cloud computing has revolutionized data
storage and management, offering scalable and flexible solu-
tions for individuals and organizations. However, this shift
has also introduced significant security challenges, particu-

E. Saginayev et al. (2024). Computing & Engineering, 2(2), 1-7

larly in safeguarding sensitive data from unauthorized access
and breaches. To address these concerns, researchers have
explored hybrid cryptographic approaches that combine
symmetric and asymmetric encryption techniques to enhance
data security in cloud environments. This section reviews
several state-of-the-art methods that utilize hybrid cryptog-
raphy for secure file storage in the cloud.

Satish B. Basapur et al. [1] proposed a hybrid crypto-
graphic model integrating the Advanced Encryption Standard
(AES) and the Rivest-Shamir-Adleman (RSA) algorithm to
preserve sensitive data privacy. Their approach involves
using AES- 256 for encrypting data due to its efficiency and
speed, while RSA is employed to securely encrypt the AES
symmetric key, enhancing key distribution security. To fur-
ther strengthen key management, a multilayer perceptron
(MLP) neural network is utilized for key generation and
exchange. Sensitive attributes within the data are identified
using the Depth First Search (DFS) technique, allowing for
targeted encryption and masking of sensitive information.
The model was evaluated using a credit card client’s dataset,
achieving an overall accuracy of 95.23.

Ritik Tyagi et al. [2] developed a secure file storage system
using hybrid cryptography on the cloud by combining AES and
RSA algorithms. In their system, data files are encrypted using
AES to leverage its high performance in handling large datasets.
The AES symmetric key is then encrypted using RSA, address-
ing the key distribution problem inherent in symmetric encryp-
tion methods. This dual-layer encryption ensures that even if
unauthorized entities access the encrypted data, they cannot
decrypt it without the corresponding RSA private key. The
proposed architecture not only enhances data security during
storage and transmission but also offers a scalable and efficient
solution suitable for enterprises aiming to protect sensitive in-
formation in the cloud. Birendra Kumar Saraswat et al. [3] in-
troduced a hybrid cryptographic approach that enhances cloud
storage security by employing multiple encryption algorithms—
AES, Data Encryption Standard (DES), and RC6. Their method
involves splitting files into three parts (file slicing), each en-
crypted with a different algorithm. This strategy increases secu-
rity by ensuring that even if one part is compromised, the others
remain secure. User-specific keys are generated during registra-
tion and stored using steganography within the user’s profile
image, adding an additional layer of security for key manage-
ment. Upon retrieval, the encrypted parts are decrypted using
their respective algorithms and recombined to reconstruct the
original file. This approach effectively mitigates risks associated
with single-point encryption failures and enhances overall data
security in the cloud.

Fortine Mata et al. [4] addressed cloud data security by
proposing an enhanced encryption model that combines AES
and Blowfish algorithms. Their model allows users to select
the desired level of security, with different encryption algo-
rithms applied based on this choice. By integrating AES,
known for its strong security features, and Blowfish, recog-
nized for its speed and efficiency, the model achieves a bal-
ance between security and performance. The hybrid approach
increases the complexity for potential attackers due to the use
of multiple encryption layers. The authors evaluated the
model based on performance metrics such as throughput,
encryption time, cipher text size, and delay. Results indicated
that while the hybrid encryption increases processing time, it
significantly enhances data confidentiality and integrity.

Jeganathan C et al. [5] proposed a secure file storage system
in cloud computing utilizing a hybrid cryptography approach
with AES and RSA algorithms. The system provides a user-
friendly web portal interface for uploading and downloading
files securely. When a user uploads a file, it is encrypted using
AES for data confidentiality. The AES key is then encrypted
using RSA before being stored in the cloud, ensuring that only
authorized users with the corresponding RSA private key can
decrypt the AES key and access the data. This method effective-
ly secures the data during storage and transmission, and the
integration of the web portal enhances usability without com-
promising security. Table | compares key approaches.

2.6. Proposed Hybrid Cryptographic Framework

This section provides a detailed overview of the proposed
solution for achieving secure cloud-based file storage. The
focus of this framework is to address critical challenges such
as data confidentiality, integrity, and effective key manage-
ment through the integration of advanced cryptographic tech-
niques. Specifically, the framework leverages the strengths of
AES- 256 for efficient data encryption, RSA for robust and
secure key management, and SHA-256 for reliable integrity
verification, ensuring a comprehensive security model.

A. Hybrid Cryptographic Framework Design

The proposed solution employs a hybrid cryptographic
framework that seamlessly combines symmetric encryption,
asymmetric encryption, and cryptographic hashing into a uni-
fied system. As conceptually illustrated in Figure 1 (refer-
enced in the Introduction), this framework relies on three
core cryptographic components, each contributing a distinct
layer of security:

1) AES-256: This advanced symmetric encryption al-
gorithm is particularly well-suited for encrypting large files.
It offers an optimal balance between high-speed performance
and strong resistance against cryptographic attacks, making it
a reliable choice for securing cloud- stored data.

2) RSA: As an asymmetric encryption technique, RSA
provides a secure mechanism for managing key exchanges.
By encrypting the AES symmetric key, RSA ensures that the
critical key material remains protected during transmission or
storage, safeguarding it against unauthorized access.

3) SHA-256: Serving as a robust cryptographic hash-
ing function, SHA-256 ensures the integrity of data by gen-
erating a unique hash value. This hash acts as a digital fin-
gerprint, making it possible to detect any unauthorized modi-
fications to the stored file, thereby preserving trust in the
data’s authenticity.

B. Algorithm for Secure Cloud Storage

To implement the proposed solution effectively, the
framework employs a structured algorithm that integrates
AES-256, RSA, and SHA-256 into a cohesive and efficient
workflow. This algorithm is designed to address all critical
aspects of secure cloud storage, from encryption and key
management to integrity verification.

C. Algorithm for Secure Cloud Storage

The implementation of the proposed hybrid cryptographic
framework adheres to a well-defined sequence of steps, en-
suring seamless integration of AES, RSA, and SHA-256
processes. This workflow ensures a secure, efficient, and
reliable process for encrypting, storing, and accessing sensi-
tive data in cloud environments. By combining the computa-
tional efficiency of AES, the secure key management capa-
bilities of RSA, and the tamper-detection strengths of SHA-

E. Saginayev et al. (2024). Computing & Engineering, 2(2), 1-7

256, the proposed framework offers a robust solution to the
challenges of secure cloud storage. The following algorithm
provides a detailed breakdown of the workflow:

Algorithm: secure file storage pro- Decryption Pro-
cess cess:

1. Initialization: {F: Plaintext file; 9. Retrieve from
PK(RSA): RSA Public Key; Cloud: Retrieve
SK(RSA): RSA Private Key; E(F), E(K(AES)),
K(AES): AES Symmetric Key; E(F): and H(SHA) from C

Encrypted file; E(K(AES)): Encrypt- 10. Decrypt
ed AES Key; H(SHA): Hash of En- Key K(AES):
crypted File; C: Cloud Storage} K(AES) =
2. Input: {F, PK(RSA), SK(RSA)} RSA De-

3. Output: {E(F), E(K(AES)), crypt(E(K(AES)),
H(SHA)} SK(RSA))

4. Set K(AES): Generate AES sym-
metric key for data en- cryption
5. Encrypt File F: E(F) = AES En-

11. Verify Integrity:
Recalculate Hash
H(SHA): H(SHA) =

crypt(F, K(AES)) SHA256(E(F)).
6. Encrypt Key K(AES): Compare H(SHA)
E(K(AES)) =RSA En- with H(SHA)

crypt(K(AES), PK(RSA)) 12. Decrypt the File:

Table 1. Comparison of modern methods based on related works

Methods/Approaches Solutions
Basapur et al. [1]
Hybrid AES and RSA

with Neural Network

AES-256 for data encryption, RSA for key
encryption, MLP neural network for key
generation and exchange

Tyagi et al. [2] . .
Hybrid AES and RSA AES for encrypting data files, RSA for
secure key exchange, Dual-layer encryption

model

Saraswat et al. [3]
Hybrid AES, DES, RC6
with Steganography

File slicing and encryption with AES,
DES, RC6, User-specific keys stored via
steganography

Mata et al. [4]

Hybrid AES and Blowfish Data encryption using a combination of

AES and Blowfish, User-selected security
levels
Jeganathan et al. [5]

Hybrid AES and RSA AES for data encryption, RSA for encrypt-

ing AES key, Web portal interface for secure
file management

A symmetric key (K(AES)) is generated to encrypt the file.
Step 4: Encrypt File. The plaintext file (F) is encrypted using
the AES symmetric key: E(F) = AES Encrypt(F, K(AES)).
Step 5: Encrypt AES Key. The symmetric key (K(AES)) is
encrypted with the RSA public key (PK(RSA)): E(K(AES))=
RSA Encrypt(K(AES), PK(RSA)). Step 6: Generate Hash. The
integrity hash (H(SHA)) is computed from the encrypted file:
H(SHA) = SHA256(E(F)). Step 7: Store in Cloud. The en-
crypted file (E(F)), the encrypted symmetric key (E(K(AES))),
and the hash value (H(SHA)) are stored in the cloud. Step 8:
Retrieve from Cloud. The encrypted file (E(F)), the encrypted
symmetric key (E(K(AES))), and the hash (H(SHA)) are re-
trieved from the cloud. Step 9: Decrypt AES Key. The RSA
private key (SK(RSA)) is used to decrypt the AES symmetric
key: K(AES) = RSA Decrypt(E(K(AES)), SK(RSA)). Step 10:
Verify Integrity. The hash of the encrypted file is recalculated:
H’(SHA) = SHA256(E(F)). The recalculated hash (H’(SHA))
is compared with the original hash (H(SHA)). If they match,
the data integrity is verified. Step 11: Decrypt File. If the hash

7. Generate Hash H(SHA): H(SHA)
= SHA256(E(F))

8. Store in Cloud: Transfer E(F),
E(K(AES)), and H(SHA) to C

Check If H(SHA) =
H(SHA), F = AES
Decrypt(E(F),
K(AES))

Algorithm 1 starts with the initialization phase, which de-
fines the core elements required for secure file encryption and
storage. Step 1: Initialization. The original file (F) repre- sents
the data to be protected. A symmetric key (K(AES)) is gener-
ated to encrypt the file using AES, chosen for its efficiency
and high security. For key management, an RSA public key
(PK(RSA)) and private key (SK(RSA)) pair are employed to
ensure secure exchange of the symmetric key. Additional
elements include the encrypted file (E(F)), the encrypted
symmetric key (E(K(AES))), and a hash value (H(SHA))
generated using SHA-256 for integrity verification. The cloud
storage (C) serves as the repository for storing encrypted arti-
facts. These components guarantee that data re- mains secure,
tamper-proof, and accessible only to authorized users. Step 2:
Input. Inputs include the plaintext file (F) to be encrypted, the
RSA public key (PK(RSA)) for encrypting the symmetric key,
and the RSA private key (SK(RSA)) for decrypting the sym-
metric key. Step 3: Generate AES Key.

Advantages/Features

High accuracy (95.23%), Efficient key
management, Targeted masking of sensi-
tive data, Enhanced security through
neural networks

Enhanced data security during storage
and transmission, Addresses key man-
agement challenges, Scalable and effi-
cient for large datasets

Increased security through — multi-
algorithm encryption, Secure key storage
using steganography, Distribution across
different cloud nodes

Enhanced confidentiality and integrity,
Combines strengths of both AES
and Blowfish algorithms

User-friendly interface, Strong data
security and confidentiality, Efficient
encryption and decryption processes

Limitations

Increased complexity due to neural
networks, Potential computational
overhead

Computational intensity of RSA
may impact performance, Requires
secure RSA key management

Increased complexity and process-
ing time, Dependence on steganog-
raphy may introduce vulnerabilities

Additional processing time due to
hybrid encryption, may require
more computational resources

Potential performance issues with
RSA encryption, Security depends
on the robustness of the web portal

values match, the encrypted file (E(F)) is decrypted using the
AES symmetric key: F = AES Decrypt(E(F), K(AES)).

The structured workflow begins with the input of the
plaintext file (F) and the RSA key pair (PK(RSA),
SK(RSA)). The output includes the encrypted file (E(F)),
ensuring data confidentiality; the encrypted symmetric key
(E(K(AES))), enabling secure key management; and the hash
value (H(SHA)), verifying the integrity of the data. This
step-by-step approach ensures robust security by combining
encryption, secure key exchange, and data integrity verifica-
tion. The process is scalable and protects sensitive data
throughout its lifecycle in the cloud.

2.7. Key equations
Key Equations with Numbers:

E(F) = AES_Encrypt F, K(AES) (©))

Equation (3) represents the encryption of the original file
F using the AES symmetric key K(AES). The output E(F)
is the ciphertext version of F.

E. Saginayev et al. (2024). Computing & Engineering, 2(2), 1-7

E K(AES) = RSA_Encrypt K(AES), PK(RSA) (4)

Equation (4) describes how the AES symmetric key
K(AES) is encrypted with the RSA public key PK(RSA).
The result is an encrypted key E(K(AES)), which can only be
decrypted by the corresponding RSA private key.

H(SHA) = SHA256 E(F) (5)

Equation (5) shows the process of creating a hash value
H(SHA) for the encrypted file E(F). Using SHA-256 ensures
that any unauthorized modifications to E(F) can be detected
by comparing this hash value before and after storage or
transmission.

K(AES) = RSA_Decrypt E(K(AES)), SK(RSA) (6)

Equation (6) represents the decryption of the AES sym-
met- ric key K(AES) using the RSA private key SK(RSA).
This step is necessary so that the decrypted AES key can
later be used to decrypt the file.

Finally, Equation (7) shows the decryption of the cipher-
text E(F) back into the original file F. This decryption uses
the AES key K(AES) that was just recovered by the RSA
decryption in the previous step.

Equations (3)—(7) together illustrate the entire process of
encrypting and decrypting a file using a hybrid cryptographic
approach. Specifically, AES is used for the file encryp-
tion/decryption steps, while RSA manages the secure ex-
change of the AES key. SHA-256 provides a reliable method
for verifying the integrity of the encrypted data, thereby
protecting against unauthorized modifications.

3. Results and discussion

3.1. Implementation and testing results

A. Experimental Setup

To validate the efficiency and robustness of the proposed
Hybrid Cryptographic System, we conducted experiments in
a controlled environment:

Programming Language: Java (JDK 17) Development
Environment: IntelliJ IDEA 2023 Operating System: Win-
dows 11 (64-bit) Hardware Configuration:

— CPU: Intel Core i7 (12th Gen), 3.6 GHz

—RAM: 16 GB DDR4

— Storage: 512 GB SSD

Libraries Used: Java Cryptography Architecture (JCA),
Bouncy Castle

B. File Encryption and Decryption Times

We tested performance using files of varying sizes (1
MB, 5 MB, 10 MB, 50 MB). Figure 3 and Table Il show the
results.

Encryption and Decryption Times for AES, RSA, and Hybrid Cryptography

&
1
arzar

= 2000

File Size [(MB)

Figure 3. Encryption and Decryption times for AES, RSA, and
Hybrid Cryptography across varying file sizes

Table 2. Encryption and Decryption Times for Various File
Sizes

File Size AES Enc RSA Key Enc Total Enc Dec
(MB) (ms) (ms) (ms) (ms)
1 56 108 164 142

5 224 112 336 290

10 469 116 585 512
50 2156 120 2276 2104

AES encryption demonstrates near-linear scalability with
file size.

RSA key encryption adds moderate overhead but does
not significantly impact total encryption time for large files.

C. Data Integrity Verification

To test the reliability of SHA-256 for data integrity, in-
tentional modifications were introduced in the encrypted
files. Table 3 shows the integrity check results.

Table 3. Data Integrity Verification Results

File Size (MB) = Tampered File (Y/N) @ Integrity Status
1 Yes

Failure
5 No Success
10 Yes Failure
50 No Success

The results demonstrate that the hybrid cryptographic
framework, integrating AES-256 for data encryption, RSA
for key management, and SHA-256 for integrity checks, is
both secure and efficient.

Comparative Analysis:

Efficiency and Speed: Compared to purely asymmetric
methods, our approach significantly reduces encryption time
for large files.

Secure Key Management: RSA resolves the key distribu-
tion challenge inherent in symmetric encryption.

Data Integrity: SHA-256 reliably identifies tampering or
corruption.

Shortcomings:

RSA still adds some overhead for key encryption, but the
trade-off is justified by stronger key management.

For extremely large files (hundreds of MB to GBs), opti-
mizing AES parameters or exploring ECC for key manage-
ment could further improve performance.

4. Conclusions

In this study, we proposed and validated a novel hybrid
cryptographic framework for secure file storage in cloud
environments. The framework effectively integrates AES-
256 for data encryption, RSA for secure key management,
and SHA-256 for integrity verification.

A. Key Findings

Performance Efficiency: AES-256 provides fast and scal-
able encryption for large datasets.

Secure Key Management: RSA ensures secure exchange
of the AES key, addressing a critical vulnerability in sym-
metric-only schemes.

Data Integrity: SHA-256 hashing robustly detects tam-
pering, safeguarding stored data against unauthorized al-
terations.

B. Comparison with Existing Work

While existing hybrid solutions may focus on either sym-
metric or asymmetric techniques, the proposed system offers a
comprehensive approach—balancing encryption speed, secure
key distribution, and data integrity checks in a single package.

E. Saginayev et al. (2024). Computing & Engineering, 2(2), 1-7

C. Future Scope

Future research may explore:

Incorporating ECC instead of RSA to reduce key- man-
agement overhead and energy consumption.

Integrating advanced authentication mechanisms (e.g.,
bio- metric or MFA) for heightened user-level security.

Testing in distributed or multi-cloud environments to
evaluate scalability and fault tolerance.

References

[1] Basapur, S.B., Shylaja, B.S. & Venkatesh. (2021). A Hybrid
Cryptographic Model Using AES and RSA for Sensitive Data
Privacy Preserving. Special Issue on Current Trends in Man-
agement and Information Technology, (18).
https://doi.org/10.14704/WEB/\V18S105/WEB18219

[2] Tyagi, R. & Verma, R. (2024). Secure File Storage Using Hybrid
Cryptography on Cloud. International Journal of Research Pub-
lication and Reviews, 5(6).

[3] Saraswat, B.K. (2023). Secure File Storage Using Hybrid Cryp-
tography on Cloud. International Journal of Research Publica-
tion and Reviews, 4(5), 5050-5053

[4] Mata, F., Kimwele, M. & Okeyo, G. (2017). Enhanced Secure
Data Storage in Cloud Computing Using Hybrid Cryptographic
Techniques (AES and Blowfish). International Journal of Sci-
ence and Research (SR), 6(3).
https://doi.org/10.21275/ART20171804

[5] Verma, V., Kumar, P., Verma, R.K. & Priya, S. (2021). A Novel
Approach for Security in Cloud Data Storage Using AES-DES-
RSA Hybrid Cryptography. Emerging Trends in Industry 4.0
(ETI 4.0). https://doi.org/10.1109/ET14.051663.2021.9619274

[6] Jeganathan, C. (2024). Secure File Storage Using AES & RSA
Algorithm in Cloud Computing. Journal of Emerging Technolo-
gies and Innovative Research (JETIR)

[7] Sharma, V. (2021). Secure File Storage on Cloud using Hybrid
Cryptography. 5th International Conference on Information Sys-
tems and Computer Networks (ISCON).
https://doi.org/10.1109/1S- CON52037.2021.9702323

[8] Chisoni, G. & Selvam, G.G. (2023). The Design and Implemen-
tation of a Secure File Storage on the Cloud using Hybrid Cryp-
tography. International Journal of Advanced Research in Sci-
ence, Communication and Technology (IJARSCT), 3(1).
https://doi.org/10.48175/1JARSCT-9067

[9] Susmitha, C. (2023). Hybrid Cryptography for Secure File Stor-
age. 7th International Conference on Computing Methodolo-
gies and Communication (ICCMC-2023).
https://doi.org/10.1109/1C- CMC56507.2023.10084073

[10] Ghadi, A.S. (2020). Secure File Storage Using Hybrid Cryptog-
raphy. International Journal of Innovative Science and Research
Technology, 5(12)

[11] Lai, J.-F. & Heng, S.-H. (2022). Secure File Storage On Cloud
Using Hybrid Cryptography. Journal of Informatics and Web
Engineering, 1(2). https://doi.org/10.33093/jiwe.2022.1.2.1

[12] Betrand, C.U., Onukwugha, C.G., Benson-Emenike, M.E.,
Ofoegbu, C.I. & Awaji, N.M. (2024). File Storage Security in
Cloud Computing Using Hybrid Encryption. Internet of Things
and Cloud Computing, 12(1), 1-9.
https://doi.org/10.11648/j.iotcc.20241201.11

[13] Fatima, S., Rehman, T., Fatima, M., Khan, S. & Ali, M.A.
(2022). Comparative Analysis of AES and RSA Algorithms for
Data Security in Cloud Computing. Eng. Proc., 20(14).
https://doi.org/10.3390/eng- proc2022020014

[14] Ramdhani, M.D. & Fuad, A.A. (2020). A Study on Hybrid Cryp-
tog- raphy Approach (AES-RSA) in Securing Cloud Environ-
ment. Proceedings of the 3rd International Conference on In-
formatics and Computational Sciences (ICICoS), IEEE.
https://doi.org/10.1109/1C1-C0S51170.2020.9299003

I'nOpuari kpunrorpagusHbl KOJIAHY aPKbLIbI OYJITTAFbI
daingapasl Kayinciz cakray xyueci

D. Carunaes’, A. Hus30s, A. Pasak, JK. Kansneepa, A. Vpasranuesa

Satbayev University, Arvamei, Kazaxcman
*Koppecnonoenyus ywin asmop: saginaev.eyn@mail.ru

Anparna. byn makana OyiTThIK ruiardopmainapia cakTanaTblH KYIHs JEPEKTepre PyKCcaTchl3 KOJI KETKI3y MaceseciH
KapacTeIpaasl. MyHai 1epeKkTep KeJeMiHiH apTyblHa OailyIaHBICTHI OJIAP.IBIH KYIHSIBUIBIFBL, TYTACTHIFBI)KOHE KOJDKETIMILTIT]
KYH CaHall MaHbI3/bI 60a Tycyne. 3epTTey KYMBICHI JKeTUIIIpUIreH KpUITOrpadHsUIBIK 9icTepAi OipiKTipe OTHIPHIN, Kayilci3
OWITTHIK cakTay >KYWeciH yChIHaIpl. ATan aiTkaHna, aepekrepai tTuimai mmdpiay ymin AES-256 anroputMi KosinaHbUIas,
aJI pyKcaT eTUITeH MaiilalaHyIubuIap FaHa JIepeKTepre KoJl JKeTKize aimysl yuriH RSA anropuTi apkKeiisl KinTrepai 6ackapy
JKysere acwlpbuiaasl. Kayinci3mikTi omaH opi KyIIeWTy MakcaThIHAA JIepeKTepliiH OypMmanaHOayblH TeKcepy YIIiH mmpiay
anabIHa JkoHe mudpaaH meiFapy keidin Secure Hash Algorithm (SHA-256) anropuTi apKbUIBI X3 MOHJEpP] XKacayasibl.
YCBIHBUIFaH ILIENIM PYKCATChI3 KOJI XKETKi3y MEH JepeKTep/iH e3repTilyiHe Kapchl CeHIMAlI KOPFaHBICTBI KaMTaMachl3 eTill,
OWITTHIK (haiinabIK cakTay *yieci ymiH Oepik Heri3 KansinracTbipaabl. Ockl oicTepi YitecTipy apKblIbl 3epTTey OYITTBIK
opTajZiarbl KYIHS IEPEKTePi KOpFay >KOHIHIET1)KYMBICTApFa yJIeC KOCHII, KHOepKAYINCi3aiK KaTepiaepiHiH YHEMi e3repil OThI-
paThIH KaFAaibIHIa 3aMaHayn KpUunTorpadusuibIK mapanapabl KOJAaHyIbIH MaHbI3IbUIBIFbIH ailKbIHAAMIbI.

Hezizei co30ep: bynmmolx Kayincizoix, eubpuomi kpunmoepagpus, AES-256, RSA ancopummi, SHA-256, depexmep myma-
CMblebl, KAYINCi3 OYImmulK caKkmay.

https://doi.org/10.14704/WEB/V18SI05/WEB18219
https://doi.org/10.1109/IS-%20CON52037.2021.9702323
https://doi.org/10.48175/IJARSCT-9067
https://doi.org/10.1109/IC-%20CMC56507.2023.10084073
https://doi.org/10.33093/jiwe.2022.1.2.1
https://doi.org/10.11648/j.iotcc.20241201.11
https://doi.org/10.3390/eng-%20proc2022020014
https://doi.org/10.1109/ICI-CoS51170.2020.9299003
mailto:saginaev.eyn@mail.ru

E. Saginayev et al. (2024). Computing & Engineering, 2(2), 1-7

be3onacHoe xpanenue GainioB B 00/1aKe C HCIOJIb30BAHUEM
ru0puaHoi Kpunrorpapuu

D. Carunaes’, A. Hus30s, A. Pasak, JK. Kansneepa, A. Vpasranuesa
Satbayev University, Awmamei, Kazaxcman
*Aemop Ons koppecnonOenyuu: saginaev.eyn@mail.ru

AHHoTanmsi. B naHHOM cTaThe paccMaTpHBaeTCs akTyallbHas poliieMa HEeCAHKIIMOHHPOBAHHOTO AOCTYIA K KOHOUICHIH-
aNIbHBIM JAHHBIM, XpaHAMMMCcS B o0yauHbIX IUiathopmax. [lo Mepe yBenuueHHss 0OBEMOB TaKHX NaHHBIX O0ECIICUCHUE HX
KOH(HICHINATIBHOCTH, LEIOCTHOCTH M JOCTYIHOCTH CTaHOBHTCA BCe 0oJiee BaXKHOM 3amadeil. B mccnenoBanuy npeiaraercs
Oe3omacHoe pemieHne s 00JagHOT0 XpaHeHus (ailloB, OCHOBAaHHOE Ha MEPEIOBEIX KpUOTOrpadruecKux Meronax. B gact-
HOCTH, U1 3 ekTHBHOTO mIH(POBAHUSA JAHHBIX HCIONB3yeTcs anroput™m AES-256, a a1t Hame:KHOTO yIpaBIeHUs KIF0UYaMi
NpUMeHsieTcsl anroput™M RSA, 4To rapaHTHpyeT TOCTYI K ITaHHBIM TOJIEKO aBTOPU30BAHHBIM I10JIb30BaTEAM. JIONOIHUTEIBHO
JUIA TIPOBEPKH LIEJIOCTHOCTH JaHHBIX MCIONb3YyeTcs anroputM xemmposaHus SHA-256, KOTOpBIH TeHepupyeT KOHTPOJIBHBIC
CYMMBI J10 1 nociie mudpoBanust. [IpemiokeHHOe penicHre 00eCIeYHBACT MOBHIIICHHYIO 3alUTY OT HECAHKIIMOHUPOBAHHOTO
JIOCTyIa ¥ M3MEHEHUIl JaHHbIX, CO3/[aBasi HaJIe)KHYI0 OCHOBY JUIsl 00Ja4HOT0 XpaHeHus: nHpopManuu. MHTerpanus 3Tux me-
TOOOB CHOCO6CTByeT YKPEIJICHUIO 3alUThI KOHq)HﬂeHHHaHLHLIX JaHHbIX B 00JIaYHBIX cpeaax, nmoaYepKruBass BaKHOCTh IPH-
MEHEHHsI COBPEMEHHBIX KPUNTOTPa(hUUECKUX TEXHOJIOTHH B YCIIOBUSAX PACTYILMX KHOEPYTrpo3.

Knroueevie cnoea: obnaunas besonacuocms, eubpuonas kpunmoepagus, AES-256, anrcopumm RSA, SHA-256, yenocm-
HOCMb OaHHBIX, 6€30NACHOe 00IaUHOe XPaHeHue.

Received: 09 February 2024
Accepted: 15 June 2024
Available online: 30 June 2024

mailto:saginaev.eyn@mail.ru

