
Computing & Engineering
Volume 1 (2023), Issue 3, 36-41

© 2023. P. Pirniyazova, E. Son, D. Kulzhan

https://ce.journal.satbayev.university/. Published by Satbayev University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

36

https://doi.org/10.51301/ce.2023.i3.07

Recognition of latin letters of the kazakh alphabet based on a neural

network

P.M. Pirniyazova*, E.Yu. Son, D.Zh. Kulzhan

Satbayev University, Almaty, Kazakhstan

*Corresponding author: pirniyazova1974@gmail.com

Abstract. This article discusses the recognition of Latin letters of the Kazakh alphabet based on a neural network using the

Tensorflow framework. The paper provides an overview of existing recognition methods, including methods based on machine

learning. To do this, a database of Kazakh letters of the Latin alphabet is being created using the Turtle graphic library. A

computational algorithm for recognizing Kazakh letters of the Latin alphabet has been developed. The algorithm uses opera-

tions on labels entered for letters to predict the target variable. The model is trained on the prepared data and then evaluated

based on its performance on the validation dataset. The overall accuracy of the model is approximately 93.90%. This means

that about 93.90% of the model's predictions were correct. The paper uses two metrics for the accuracy Precision and com-

pleteness Recall classes. These metrics show whether the models work well by class, show information about the performance

of the model. The experiments have shown that the proposed algorithm provides high accuracy of recognition of letters of the

Latin Kazakh alphabet. The results are illustrated graphically. In the discussion of the results, a multiclass ROC curve is pre-

sented, which is a graphical representation of the performance of the classification model at all classification thresholds. The

performance of the model as a whole indicates the high performance of the classification model. The algorithm proposed in the

article for recognizing Latin letters of the Kazakh alphabet can be used in various applications, such as optical character recog-

nition (OCR) systems, automated verification of entered texts using mobile devices.

Keywords: recognition, neural networks, perceptron, synaps, weight matrix, pixel matri, layers, errors.

1. Introduction

The growth of digital technologies opens up many oppor-

tunities for working with data. The gradual transition of the

Kazakh language to the Latin script is a challenge to moderni-

ty and changes in modern realities, that is, there is a place of

identity and culture of the language. Looking into the history

and culture of the language, its changing history of Romaniza-

tion began at the beginning of the 20th century of the last

century. The idea of the transition of the Latin script of the

Kazakh alphabet of that time was to raise the culture of the

language and literacy of the population. The gradual transi-

tion then began as early as 1923 and officially passed in

1929 of the last centuries. The Latin alphabet of that time

consisted of 30 letters with the need to add signs to them to

give specificity to the sounds of the Kazakh alphabet. The life

of the Latin alphabet at that time was short and it existed from

1929 to 1939. Based on the Latin script, a new Cyrillic alpha-

bet was prepared in the 1940s of the last centuries. This writ-

ing was based on Russian graphics, which consists of 42 let-

ters and considered the phonetic features of the Kazakh lan-

guage. The current transition of the Kazakh language to Latin

script is conditioned by the challenge of modernity, since after

gaining independence many post-Soviet countries switched to

Latin script.

In 2017, Kazakhstan approved the standard version of the

Latin script of the Kazakh alphabet. According to its specifics,

the new version of the Latin script of the Kazakh language is

much closer to the Turkish language, which emphasizes the

convergence of the cultures of the language, the historical

culture of the Turkic peoples.

The current alphabet of the Latin script of the Kazakh lan-

guage has 32 letters. To date, the transition to Romanization

has already begun with basic documentation, the main docu-

mentation is produced in this writing. To facilitate the work of

translating text, books, to raise the culture of the language, it is

the phonetic expression of Kazakh letters, not allowing confu-

sion of letters shown on Figure 1.

Figure 1. Letters of the Kazakh language

This underlines the relevance of the chosen topic of

recognition of Kazakh letters in Latin script. The Latin

graphics of the Kazakh alphabet use 32 letters, which is

shown in Figure 2.

Recognition of Latin letters of the Kazakh alphabet is an

important task in the field of computer vision and image

processing. Despite the fact that the Kazakh alphabet is based

on the Latin alphabet, there are some differences, such as

additional letters and punctuation marks.

Below we will provide reviews of research on the chosen

topic in the work [1] of the authors of domestic scientists, a

method for recognizing Latin letters of the Kazakh alphabet

based on deep learning is proposed. The method is based on

the use of a convolutional neural network, which is trained

on a data set consisting of handwritten and printed letters.

https://ce.journal.satbayev.university/
http://creativecommons.org/licenses/by/4.0/
mailto:pirniyazova1974@gmail.com
https://ce.journal.satbayev.university/index.php/journal/article/view/1266

P. Pirniyazova et al. (2023). Computing & Engineering, 1(3), 36-41

37

Experimental results have shown that the proposed method

provides high recognition accuracy.

Figure.2 Latin script of the Kazakh language

In [2], a method for recognizing Latin letters of the Kazakh

alphabet based on machine learning is proposed. The method

is based on the use of reference vector machines, which are

trained on a data set consisting of handwritten and printed

letters. Experimental results have shown that the proposed

method provides good recognition accuracy.

The paper [3] proposes a method for recognizing Latin

letters of the Kazakh alphabet based on statistical methods.

The method is based on the use of probabilistic models that are

trained on a data set consisting of handwritten and printed

letters. Experimental results have shown that the proposed

method provides satisfactory recognition accuracy.

Unlike the works of other authors, this article presents

algorithms constructed by the gradient descent method and

analyses of the results obtained.

All these articles are an overview of various methods. Each

of the methods has its advantages and disadvantages. Methods

based on deep learning provide high recognition accuracy, but

require large computational resources. Methods based on

machine learning provide good recognition accuracy and require

less computing resources than methods based on deep learning.

2. Materials and methods

To develop a computational algorithm for recognizing

Kazakh letters of the Latin alphabet, a model is introduced

according to which the recognition algorithm will be trained,

the model uses operations on labels introduced by us for

letters, for predictions of the target variable, that is, there is a

mapping from the space of labels to the space of target

predictions [9]:

a:X→Y

where a∈A is a family of models. Next, rewriting the

model in the form - y , where y is in turn equal to

(, ,)iy a x w h=

Where xi - is the label vector for the i-th letter, w- are the

model parameters (optimized by the model algorithm) h are

the hyperparameters of the model (optimized by those who

run machine learning algorithms). After the model is

selected, we begin to train it by dividing the training of the

model into training and test samples.

A training sample - is a data set for which we know the

«letter models – target variable» for each letter from the

sample.

A test sample - is a data set for which only the labels of

the letter model are known. In order to assess how bad or

good a given model is, we use the loss function (,)i iL y y to

assess the quality of the model. For a specific letter i iy y−

the prediction of the model and the real value of the target

variable coincide, then the loss functions (,)i iL y y takes

small values. If the prediction of the model and the real value

differ, then the loss function takes on large values. Using the

data from the training sample, we estimate the loss

functional. The loss functional is the average value of the

loss function for all labels from the training sample:

1

1
(,) (, (, ,))n

i iiQ a X L y a x w h
n == 

Therefore, the purpose of the training will be as follows

(,) min
a A

Q a X


→

where a A a family of models.During the training

process, we must select such parameters and

hyperparameters of the model that best predict the target

values in the training sample.

In the learning process, there is a certain pattern in which

simple models contain a limited number of features and the

dependence between variables have large values of loss

functions, complex models that have many features and there

are complex dependencies between variables may have low

values of loss functions. When training the model, the loss

functions on the test data may initially decrease, but at some

point a situation may arise when the losses on the test sample

begin to grow again, and the losses on the training sample

continue to fall. Using an approach called validation in this

case, we take a «piece» of the training sample, postponing it,

train the model on the rest of the training sample and test it

on the deferred «piece». This type of validation is called the

use of deferred sampling [9] (train_test_split), Figure 3.

Figure 3. Deferred sampling scheme

Preparing data for machine learning models using

TensorFlow and Keras frameworks.

The model learning algorithm is described below:

1. Import libraries: The necessary modules and functions

are imported from TensorFlow, Keras and Scikit-Learn.

This includes layers and models from Keras, a utility for

converting labels to a categorical format, functions for

dividing data into training and test samples, as well as a

module for preprocessing.

2. Image preprocessing: The

preprocess_images_with_opencv function, defined earlier, is

called to convert a set of images and their labels into a format

suitable for training the model. The result is stored in the

variables preprocessed_data and preprocessed_labels.

3. Preparation of input data and labels: X is initialized as a

preprocessed_data containing images. y is initialized as

preprocessed_labels containing labels.

P. Pirniyazova et al. (2023). Computing & Engineering, 1(3), 36-41

38

4. Encoding of labels: An instance of LabelEncoder is

created to convert labels from text format to numeric format.

Labels are encoded using the fit and transform method of this

encoder.

5. Converting labels to one-hot format: The to_categorical

function from Keras is used to convert numeric labels to one-

hot encoding format. This is a common practice when

processing categorical data for classification tasks.

The comment indicates that 60 classes are assumed (there

is a slight inaccuracy in the comment mentioning 26 classes,

which may be a discrepancy with the actual number of classes

in this case). This code prepares data for neural network

training by processing images and converting labels into a

format suitable for classification models in

TensorFlow/Keras.

Importing the Tensorflow framework, Keras and their

components, as well as functions for dividing data into training

and validation samples, we divide the data into training and

validation samples (Figure 2.) while using the train_test_split

function from the Scikit-Learn library to separate data (X) and

labels (y) into training (X_train, y_train) and validation

(X_val, y_val) samples. 20% of the data is allocated for

validation (test_size=0.2).

Next, repeating the process of dividing the sample into

training and validation, we use n-Fold cross-validation. The

training sample is divided into n parts of the same volume,

which contain different objects. N iterations are performed and

at each iteration the model is trained on (n-1) parts of the

training sample, and the model is also tested on a training

sample that did not participate in the training.

The basic Keras data structure is a model, a way of

organizing layers. There are two basic types of models

available in Keras: the Sequential model and the Model class

used with the functional API. We used the Sequential model,

which creates CNN models using a sequential stack of layers

(models Sequential).

Convolutional layers are the main block of a convolutional

non–linear network. The convolution layer includes its own

filter for each channel, the convolution core, which processes

the previous layer in fragments (summing up the results of the

matrix product for each fragment). The weight coefficients of

the convolution core (a small matrix) are unknown and are set

during the learning process. The peculiarity of convolutional

layers is the relatively small number of parameters set during

training.

Conv2D - is a 2D mesh layer (for example, spatial

convolution over images). This layer creates a convolution

core to create an output tensor. The model includes several

convolutional layers (Conv2D) with ReLU activation and

pooling layers (MaxPooling2D), as well as fully connected

layers (Dense) and a regularization layer (Dropout). The

output layer uses the softmax activation function to classify

images into several classes. The method of configuring the

model for training includes the compilation optimizer ‘adam’,

the loss function ‘categorical_crossentropy’ and the metric

‘accuracy'. The model is compiled with the ‘adam’

optimizer, the ‘categorical_crossentropy’ loss function

(suitable for multiclass classification) and the ‘accuracy’

metric.

The model is trained on X_train and y_train data indicating

the number of epochs (epochs), batch size (batch_size) and

validation data (X_val, y_val). The number of epochs and

batch size can be adjusted depending on the specifics of the

task and the capabilities of the computing system.

The results obtained: The model will be trained on the

prepared data, and then evaluated based on its performance on

the validation dataset (Figure 4).

Figure 4. Convolutional neural network (CNN) training using Tenzorflow and Keras for image classification

Analysis of the results obtained. The analysis of the error

matrix shows the following:

- The overall accuracy of the model is approximately

93.90%. This means that about 93.90% of the model's

predictions were correct.

- Accuracy by class (Precision), Completeness (Recall) and

F1-measure (F1 Score) for each class show different levels of

performance. These metrics are useful for determining how

well the model works for each specific class.

P. Pirniyazova et al. (2023). Computing & Engineering, 1(3), 36-41

39

For example: For a class with index 0, accuracy is 95.85%,

completeness is 93.38%, and F1 measure is 94.60%.

For a class with an index of 25, accuracy is 86.56%, com-

pleteness is 65.71%, and F1-measure is 74.71%. This may

indicate that the model is having difficulty correctly recogniz-

ing this class.

These metrics provide valuable information about the per-

formance of the model and can be used to further improve and

customize the model (Figure 5).

Figure 5. The model

Analyzing the visualization of tsn, several observations

can be made regarding the distribution (Figure 6).

Figure 6. Analysis of tSNE visualizations

Figure 7. Multiclass ROC curve (model representations at all classification thresholds)

By analyzing the visualization of t-SNE, several

observations can be made regarding the distribution and

structure of the data:

1. Data clustering: t-SNE has effectively mapped

multidimensional data into a two-dimensional space in such a

way that the data is grouped into clusters. Clusters with the

same color represent data of the same class. Well-defined and

isolated clusters can indicate good class distinctiveness.

2. Overlap between clusters: Some clusters show overlap

or proximity to other clusters. This overlap may indicate the

likelihood of classification errors, since the model may

mistakenly assign data from one cluster to a neighboring one.

P. Pirniyazova et al. (2023). Computing & Engineering, 1(3), 36-41

40

This is especially noticeable for clusters in the central part of

the graph.

3. Outliers: The graph shows points that do not belong to

explicit clusters or are far from their main groups. These

outliers may represent abnormal data or errors in the data that

may make classification difficult.

4. Cluster density: Some clusters are denser and more

compact, indicating high consistency of data within the class.

While more scattered clusters may indicate intra-class

variability.

5. Class homogeneity: If clusters are distinct, separate

groups, this may indicate homogeneity within classes. If the

clusters are blurred and fuzzy, this may indicate heterogeneity

or class mixing.

Figure 7 below shows a multiclass ROC curve (Receiver

Operating Characteristic curve), which is a graphical

representation of the performance of the classification model

at all classification thresholds.

3. Results and discussion

Figure 6 shows a multiclass ROC curve (Receiver

Operating Characteristic curve), which is a graphical

representation of the performance of the classification model

at all classification thresholds. The main aspects of this graph

are:

Each line of the ROC curves corresponds to one class.

The ideal model will have a ROC curve going straight up the

sensitivity axis (True Positive Rate) and then to the right

along the specificity axis (1 - False Positive Rate), which

means that the model has a perfect difference between

classes.

The area under the curve (AUC) close to 1.00 indicates a

very high performance of the model in the classification of

this class. Ideally, the AUC should be as close to 1 as

possible. In this graph, for almost all classes, the AUC is

1.00, which indicates an exceptionally high classification

accuracy.

The diagonal dotted line represents a random guess. Any

ROC curve above this line indicates better performance than

random guessing.

The ROC curve for class 25 has an AUC lower than 1.00

(the exact value is not visible, but it is indicated that it is less

than 1). This indicates that the classification for this class is

not ideal and there is some room for error.

The performance of the model as a whole indicates a high

performance of the classification model, since most classes

have an AUC of 1.00. This means that the model separates

positive and negative cases very well for most classes.

It is important to note that although the ROC curve can

provide performance information for all thresholds, in

practice it is also important to look at other metrics such as

accuracy, completeness, and F1 measure to get a complete

picture of the model's performance.

4. Conclusions

Recognition of Latin letters of the Kazakh alphabet is an

important task in the field of computer vision and image

processing. The gradient descent method was used in the

study. The Kazakh alphabet, based on Latin, has some differ-

ences, such as additional letters and punctuation marks.

The paper provides an overview of existing recognition

methods, including methods based on machine learning. The

algorithm proposed in the article for recognizing Latin letters

of the Kazakh alphabet can be used in various applications,

such as optical character recognition (OCR) systems, auto-

mated verification of entered texts using mobile devices.

The algorithm uses operations on labels entered for letters

to predict the target variable. The experiments have shown

that the proposed algorithm provides high accuracy of recog-

nition of letters of the Latin Kazakh alphabet.

Acknowledgements

We studied this study independently under the guidance

of the teacher Ph.D. Pirniyazova. We express our great grati-

tude to our teacher for the support and direction in the study.

References

[1] Abdrakhmanov, A.K., Bekbosynov, B.K. (2023). Recognition of

Latin letters of the Kazakh alphabet based on deep learning. Bul-

letin of KazNTU, 17(3), 123-128.

[2] Amanzholova, A.T., Iskakova, A.K. & Kudaibergenov, D.T.

(2022). Recognition of Latin letters of the Kazakh alphabet based

on machine learning. Bulletin of KazNTU, 16(2), 120-125

[3] Eskendirov, A.B., Abdrakhmanov, A.K., Bekbosynov, B.K.

(2021). Recognition of Latin letters of the Kazakh alphabet based

on statistical methods. Bulletin of KazNTU, 15(1), 116-121

[4] Katılmış, Z. & Karakuzu, C. (2021). Journal Pre-proofs ELM

Based Two-Handed Dynamic Turkish Sign Language (TSL)

Word Recognition. Expert Systems with Applications, (182),

115213. https://doi.org/10.1016/j.eswa.2021.115213

[5] Sir Eiad Almekhlafi, Moeen AL-Makhlafi, Erlei Zhang, Jun

Wang, Jinye Peng. (2022). A classification benchmark for Ara-

bic alphabet phonemes with diacritics in deep neural networks.

Computer Speech & Language, (71), 101274.
https://doi.org/10.1016/j.csl.2021.101274

[6] Somsap, S., Seresangtakul, P. (2020). Isarn Dharma Word Seg-

mentation Using a Statistical Approach with Named Entity

Recognition. ACM Transactions on Asian and Low-Resource

Language Information Processing (TALLIP), 19(1), 1-16.

https://doi.org/10.1145/3359990

[7] Danilov, A.V., Zaripova, R.R., Salekhova, L.L. (2017). The

application of statistical methods in the development of Cyrillic-

Latin converter for Tatar language. Journal of Fundamental and

Applied Science, 9(7S)

[8] Jyoti Pareek, Dimple Singhania, Rashmi Rekha Kumari, Suchit

Purohit. (2020). Gujarati Handwritten Character Recognition

from Text Images. Procedia Computer Science, (171), 514–523.

https://doi.org/10.1016/j.procs.2020.04.055

[9] Gafarov, F.M., Galimyanov, A.F. (2018). Artificial neural net-

works and applications: studies. the manual. Kazan: Kazan Pub-

lishing House

[10] Dolganov, A.Yu., Ronkin, M.V. & Sozykin, A.V. (2023). Basic

machine learning algorithms in Python: textbook. Yekaterinburg:

Publishing House of the Ural University

[11] Pirniazova, P.M., Son, E.Yu. & Kulzhan, D.J. (2023). Copyright

certificate No. 41683 for the program «Recognition of Latin let-

ters of the Kazakh alphabet based on a neural network»

https://www.sciencedirect.com/journal/expert-systems-with-applications
https://doi.org/10.1016/j.eswa.2021.115213
https://www.sciencedirect.com/journal/computer-speech-and-language
https://doi.org/10.1016/j.csl.2021.101274
https://dl.acm.org/doi/10.1145/3359990
https://dl.acm.org/toc/tallip/2020/19/2
https://dl.acm.org/toc/tallip/2020/19/2
https://doi.org/10.1145/3359990
https://doi.org/10.1016/j.procs.2020.04.055

P. Pirniyazova et al. (2023). Computing & Engineering, 1(3), 36-41

41

Нейрондық желі негізінде қазақ әліпбинің латын әріптерін тану

П.М. Пирниязова*, Е.Ю.Сон, Д.Ж. Құлжан

Satbayev University, Алматы, Қазақстан

*Корреспонденция үшін автор: pirniyazova1974@gmail.com

Аңдатпа. Бұл мақалада TensorFlow фреймворкін пайдалана отырып, нейрондық желі негізінде қазақ әліпбиінің

латын әріптерін тану қарастырылады. Ол үшін turtle графикалық кітапханасының көмегімен латын әліпбиінің қазақ

әріптерінің дерекқоры құрылады. Алгоритм әріптер үшін еңгізілген таңбалар үстінде операцияларды қолданады,

мақсатты айнымалыны болжау үшін. Жүргізілген эксперименттер ұсынылған алгоритм латын қазақ әліпбиінің

әріптерін танудың жоғары дәлдігін қамтамасыз ететіндігін көрсетті. Латын әліпбиінің қазақ әріптерін танудың есептеу

алгоритмі әзірленді. Бағдарламалық жасақтама латын әліпбиінің әріптерін таниды. Алынған нәтижелер графикалық

түрде суреттелген.

Негізгі сөздер: тану, нейрондық желілер, перцептрон, синапс, салмақ матрицасы, пиксель матрицасы, қабаттар,

қателер.

Распознавание латинских букв казахского алфавита на основе

нейронной сети

П.М. Пирниязова*, Е.Ю. Сон, Д.Ж. Құлжан

Satbayev University, Алматы, Казахстан

*Автор для корреспонденции: pirniyazova1974@gmail.com

Аннотация. В данной статье рассматривается распознавание латинских букв казахского алфавита на основе

нейронной сети с использованием фреймворка TensorFlow. Для этого с помощью графической библиотеки turtle со-

здается база данных казахских букв латинского алфавита. Алгоритм использует операции над вставленными симво-

лами для букв, чтобы предсказать целевую переменную. Проведенные эксперименты показали, что предложенный

алгоритм обеспечивает высокую точность распознавания букв латинского казахского алфавита. Разработан вычисли-

тельный алгоритм распознавания казахских букв латинского алфавита. Программное обеспечение распознает буквы

латинского алфавита. Полученные результаты проиллюстрированы графически.

Ключевые слова: распознавание, нейронные сети, перцептрон, синапс, весовая матрица, матрица пикселей, слои,

погрешности.

Received: 02 June 2023

Accepted: 15 September 2023

Available online: 30 September 2023

mailto:pirniyazova1974@gmail.com
mailto:pirniyazova1974@gmail.com

