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Abstract. This article discusses the recognition of Latin letters of the Kazakh alphabet based on a neural network using the 

Tensorflow framework. The paper provides an overview of existing recognition methods, including methods based on machine 

learning. To do this, a database of Kazakh letters of the Latin alphabet is being created using the Turtle graphic library. A 

computational algorithm for recognizing Kazakh letters of the Latin alphabet has been developed. The algorithm uses opera-

tions on labels entered for letters to predict the target variable. The model is trained on the prepared data and then evaluated 

based on its performance on the validation dataset. The overall accuracy of the model is approximately 93.90%. This means 

that about 93.90% of the model's predictions were correct. The paper uses two metrics for the accuracy Precision and com-

pleteness Recall classes. These metrics show whether the models work well by class, show information about the performance 

of the model. The experiments have shown that the proposed algorithm provides high accuracy of recognition of letters of the 

Latin Kazakh alphabet. The results are illustrated graphically. In the discussion of the results, a multiclass ROC curve is pre-

sented, which is a graphical representation of the performance of the classification model at all classification thresholds. The 

performance of the model as a whole indicates the high performance of the classification model. The algorithm proposed in the 

article for recognizing Latin letters of the Kazakh alphabet can be used in various applications, such as optical character recog-

nition (OCR) systems, automated verification of entered texts using mobile devices. 
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1. Introduction 

The growth of digital technologies opens up many oppor-

tunities for working with data. The gradual transition of the 

Kazakh language to the Latin script is a challenge to moderni-

ty and changes in modern realities, that is, there is a place of 

identity and culture of the language. Looking into the history 

and culture of the language, its changing history of Romaniza-

tion began at the beginning of the 20th century of the last 

century. The idea of the transition of the Latin script of the 

Kazakh alphabet of that time was to raise the culture of the 

language and literacy of the population. The gradual   transi-

tion then began as early as 1923 and officially    passed in 

1929 of the last centuries. The Latin alphabet of that time 

consisted of 30 letters with the need to add signs to them to 

give specificity to the sounds of the Kazakh alphabet. The life 

of the Latin alphabet at that time was short and it existed from 

1929 to 1939. Based on the Latin script, a new Cyrillic alpha-

bet was prepared in the 1940s of the last centuries. This writ-

ing was based on Russian graphics, which consists of 42 let-

ters and considered the phonetic features of the Kazakh lan-

guage. The current transition of the Kazakh language to Latin 

script is conditioned by the challenge of modernity, since after 

gaining independence many post-Soviet countries switched to 

Latin script.  

In 2017, Kazakhstan approved the standard version of the 

Latin script of the Kazakh alphabet. According to its specifics, 

the new version of the Latin script of the Kazakh language is 

much closer to the Turkish language, which emphasizes the 

convergence of the cultures of the language, the historical 

culture of the Turkic peoples.   

The current alphabet of the Latin script of the Kazakh lan-

guage has 32 letters. To date, the transition to Romanization 

has already begun with basic documentation, the main docu-

mentation is produced in this writing. To facilitate the work of 

translating text, books, to raise the culture of the language, it is 

the phonetic expression of Kazakh letters, not allowing confu-

sion of letters shown on Figure 1. 

 

Figure 1. Letters of the Kazakh language 

This underlines the relevance of the chosen topic of 

recognition of Kazakh letters in Latin script. The Latin 

graphics of the Kazakh alphabet use 32 letters, which is 

shown in Figure 2. 

Recognition of Latin letters of the Kazakh alphabet is an 

important task in the field of computer vision and image 

processing. Despite the fact that the Kazakh alphabet is based 

on the Latin alphabet, there are some differences, such as 

additional letters and punctuation marks.  

Below we will provide reviews of research on the chosen 

topic in the work [1] of the authors of domestic scientists, a 

method for recognizing Latin letters of the Kazakh alphabet 

based on deep learning is proposed. The method is based on 

the use of a convolutional neural network, which is trained 

on a data set consisting of handwritten and printed letters. 
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Experimental results have shown that the proposed method 

provides high recognition accuracy. 

 

 

Figure.2 Latin script of the Kazakh language 

In [2], a method for recognizing Latin letters of the Kazakh 

alphabet based on machine learning is proposed. The method 

is based on the use of reference vector machines, which are 

trained on a data set consisting of handwritten and printed 

letters. Experimental results have shown that the proposed 

method provides good recognition accuracy.    

The paper [3] proposes a method for recognizing Latin 

letters of the Kazakh alphabet based on statistical methods. 

The method is based on the use of probabilistic models that are 

trained on a data set consisting of handwritten and printed 

letters. Experimental results have shown that the proposed 

method provides satisfactory recognition accuracy. 

Unlike the works of other authors, this article presents 

algorithms constructed by the gradient descent method and 

analyses of the results obtained. 

All these articles are an overview of various methods. Each 

of the methods has its advantages and disadvantages. Methods 

based on deep learning provide high recognition accuracy, but 

require large computational resources. Methods based on 

machine learning provide good recognition accuracy and require 

less computing resources than methods based on deep learning. 

2. Materials and methods 

To develop a computational algorithm for recognizing 

Kazakh letters of the Latin alphabet, a model is introduced 

according to which the recognition algorithm will be trained, 

the model uses operations on labels introduced by us for 

letters, for predictions of the target variable, that is, there is a 

mapping from the space of labels to the space of target 

predictions [9]: 

a:X→Y 

where a∈A is a family of models. Next, rewriting the 

model in the form - y , where y is in turn equal to                                                                             

( , , )iy a x w h=
 

Where xi - is the label vector for the i-th letter, w- are the 

model parameters (optimized by the model algorithm) h are 

the hyperparameters of the model (optimized by those who 

run machine learning algorithms). After the model is 

selected, we begin to train it by dividing the training of the 

model into training and test samples. 

A training sample - is a data set for which we know the 

«letter models – target variable» for each letter from the 

sample. 

A test sample - is a data set for which only the labels of 

the letter model are known. In order to assess how bad or 

good a given model is, we use the loss function ( , )i iL y y to 

assess the quality of the model. For a specific letter i iy y−  

the prediction of the model and the real value of the target 

variable coincide, then the loss functions ( , )i iL y y takes 

small values. If the prediction of the model and the real value 

differ, then the loss function takes on large values. Using the 

data from the training sample, we estimate the loss 

functional. The loss functional is the average value of the 

loss function for all labels from the training sample:                                              

1

1
( , ) ( , ( , , ))n

i iiQ a X L y a x w h
n ==                                                                                  

Therefore, the purpose of the training will be as follows 

( , ) min
a A

Q a X


→  

where  a A  a family of models.During the training 

process, we must select such parameters and 

hyperparameters of the model that best predict the target 

values in the training sample. 

In the learning process, there is a certain pattern in which 

simple models contain a limited number of features and the 

dependence between variables have large values of loss 

functions, complex models that have many features and there 

are complex dependencies between variables may have low 

values of loss functions. When training the model, the loss 

functions on the test data may initially decrease, but at some 

point a situation may arise when the losses on the test sample 

begin to grow again, and the losses on the training sample 

continue to fall. Using an approach called validation in this 

case, we take a «piece» of the training sample, postponing it, 

train the model on the rest of the training sample and test it 

on the deferred «piece». This type of validation is called the 

use of deferred sampling [9] (train_test_split), Figure 3. 

 

 

Figure 3. Deferred sampling scheme 

Preparing data for machine learning models using 

TensorFlow and Keras frameworks. 

The model learning algorithm is described below: 

1. Import libraries: The necessary modules and functions 

are imported from TensorFlow, Keras and Scikit-Learn. 

This includes layers and models from Keras, a utility for 

converting labels to a categorical format, functions for 

dividing data into training and test samples, as well as a 

module for preprocessing. 

2. Image preprocessing: The 

preprocess_images_with_opencv function, defined earlier, is 

called to convert a set of images and their labels into a format 

suitable for training the model. The result is stored in the 

variables preprocessed_data and preprocessed_labels. 

3. Preparation of input data and labels: X is initialized as a 

preprocessed_data containing images. y is initialized as 

preprocessed_labels containing labels. 
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4. Encoding of labels: An instance of LabelEncoder is 

created to convert labels from text format to numeric format. 

Labels are encoded using the fit and transform method of this 

encoder. 

5. Converting labels to one-hot format: The to_categorical 

function from Keras is used to convert numeric labels to one-

hot encoding format. This is a common practice when 

processing categorical data for classification tasks. 

The comment indicates that 60 classes are assumed (there 

is a slight inaccuracy in the comment mentioning 26 classes, 

which may be a discrepancy with the actual number of classes 

in this case). This code prepares data for neural network 

training by processing images and converting labels into a 

format suitable for classification models in 

TensorFlow/Keras. 

Importing the Tensorflow framework, Keras and their 

components, as well as functions for dividing data into training 

and validation samples, we divide the data into training and 

validation samples (Figure 2.) while using the train_test_split 

function from the Scikit-Learn library to separate data (X) and 

labels (y) into training (X_train, y_train) and validation 

(X_val, y_val) samples. 20% of the data is allocated for 

validation (test_size=0.2). 

Next, repeating the process of dividing the sample into 

training and validation, we use n-Fold cross-validation. The 

training sample is divided into n parts of the same volume, 

which contain different objects. N iterations are performed and 

at each iteration the model is trained on (n-1) parts of the 

training sample, and the model is also tested on a training 

sample that did not participate in the training. 

The basic Keras data structure is a model, a way of 

organizing layers. There are two basic types of models 

available in Keras: the Sequential model and the Model class 

used with the functional API. We used the Sequential model, 

which creates CNN models using a sequential stack of layers 

(models Sequential). 

Convolutional layers are the main block of a convolutional 

non–linear network. The convolution layer includes its own 

filter for each channel, the convolution core, which processes 

the previous layer in fragments (summing up the results of the 

matrix product for each fragment). The weight coefficients of 

the convolution core (a small matrix) are unknown and are set 

during the learning process. The peculiarity of convolutional 

layers  is the relatively small number of parameters set during 

training. 

Conv2D -  is a 2D mesh layer (for example, spatial 

convolution over images). This layer creates a convolution 

core to create an  output tensor. The model includes several 

convolutional layers (Conv2D) with ReLU activation and 

pooling layers (MaxPooling2D), as well as fully connected 

layers (Dense) and a regularization layer (Dropout). The 

output layer uses the softmax activation function to classify 

images into several classes. The method of configuring the 

model for training includes the compilation optimizer ‘adam’, 

the loss function ‘categorical_crossentropy’ and the metric 

‘accuracy'. The model is compiled with the ‘adam’ 

optimizer, the ‘categorical_crossentropy’ loss function 

(suitable for multiclass classification) and the ‘accuracy’ 

metric. 

The model is trained on X_train and y_train data indicating 

the number of epochs (epochs), batch size (batch_size) and 

validation data (X_val, y_val). The number of epochs and 

batch size can be adjusted depending on the specifics of the 

task and the capabilities of the computing system. 

The results obtained: The model will be trained on the 

prepared data, and then evaluated based on its performance on 

the validation dataset (Figure 4). 

 

 

Figure 4. Convolutional neural network (CNN) training using Tenzorflow and Keras for image classification 

Analysis of the results obtained. The analysis of the error 

matrix shows the following:  

- The overall accuracy of the model is approximately 

93.90%. This means that about 93.90% of the model's 

predictions were correct. 

- Accuracy by class (Precision), Completeness (Recall) and 

F1-measure (F1 Score) for each class show different levels of 

performance. These metrics are useful for determining how 

well the model works for each specific class. 
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For example: For a class with index 0, accuracy is 95.85%, 

completeness is 93.38%, and F1 measure is 94.60%. 

For a class with an index of 25, accuracy is 86.56%, com-

pleteness is 65.71%, and F1-measure is 74.71%. This may 

indicate that the model is having difficulty correctly recogniz-

ing this class. 

These metrics provide valuable information about the per-

formance of the model and can be used to further improve and 

customize the model (Figure 5). 

 

 
Figure 5. The model 

Analyzing the visualization of tsn, several observations 

can be made regarding the distribution (Figure 6). 

 

 
Figure 6. Analysis of tSNE visualizations 

 

Figure 7. Multiclass ROC curve (model  representations at all classification thresholds) 

By analyzing the visualization of t-SNE, several 

observations can be made regarding the distribution and 

structure of the data: 

1. Data clustering: t-SNE has effectively mapped 

multidimensional data into a two-dimensional space in such a 

way that the data is grouped into clusters. Clusters with the 

same color represent data of the same class. Well-defined and 

isolated clusters can indicate good class distinctiveness. 

2. Overlap between clusters: Some clusters show overlap 

or proximity to other clusters. This overlap may indicate the 

likelihood of classification errors, since the model may 

mistakenly assign data from one cluster to a neighboring one. 
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This is especially noticeable for clusters in the central part of 

the graph. 

3. Outliers: The graph shows points that do not belong to 

explicit clusters or are far from their main groups. These 

outliers may represent abnormal data or errors in the data that 

may make classification difficult. 

4. Cluster density: Some clusters are denser and more 

compact, indicating high consistency of data within the class. 

While more scattered clusters may indicate intra-class 

variability. 

5. Class homogeneity: If clusters are distinct, separate 

groups, this may indicate homogeneity within classes. If the 

clusters are blurred and fuzzy, this may indicate heterogeneity 

or class mixing. 

Figure 7 below shows a multiclass ROC curve (Receiver 

Operating Characteristic curve), which is a graphical 

representation of the performance of the classification model 

at all classification thresholds. 

3. Results and discussion 

Figure 6 shows a multiclass ROC curve (Receiver 

Operating Characteristic curve), which is a graphical 

representation of the performance of the classification model 

at all classification thresholds. The main aspects of this graph 

are: 

Each line of the ROC curves corresponds to one class. 

The ideal model will have a ROC curve going straight up the 

sensitivity axis (True Positive Rate) and then to the right 

along the specificity axis (1 - False Positive Rate), which 

means that the model has a perfect difference between 

classes. 

The area under the curve (AUC) close to 1.00 indicates a 

very high performance of the model in the classification of 

this class. Ideally, the AUC should be as close to 1 as 

possible. In this graph, for almost all classes, the AUC is 

1.00, which indicates an exceptionally high classification 

accuracy. 

The diagonal dotted line represents a random guess. Any 

ROC curve above this line indicates better performance than 

random guessing. 

The ROC curve for class 25 has an AUC lower than 1.00 

(the exact value is not visible, but it is indicated that it is less 

than 1). This indicates that the classification for this class is 

not ideal and there is some room for error. 

The performance of the model as a whole indicates a high 

performance of the classification model, since most classes 

have an AUC of 1.00. This means that the model separates 

positive and negative cases very well for most classes. 

It is important to note that although the ROC curve can 

provide performance information for all thresholds, in 

practice it is also important to look at other metrics such as 

accuracy, completeness, and F1 measure to get a complete 

picture of the model's performance. 

4. Conclusions 

Recognition of Latin letters of the Kazakh alphabet is an 

important task in the field of computer vision and image 

processing. The gradient descent method was used in the 

study. The Kazakh alphabet, based on Latin, has some differ-

ences, such as additional letters and punctuation marks. 

The paper provides an overview of existing recognition 

methods, including methods based on machine learning. The 

algorithm proposed in the article for recognizing Latin letters 

of the Kazakh alphabet can be used in various applications, 

such as optical character recognition (OCR) systems, auto-

mated verification of entered texts using mobile devices. 

The algorithm uses operations on labels entered for letters 

to predict the target variable. The experiments have shown 

that the proposed algorithm provides high accuracy of recog-

nition of letters of the Latin Kazakh alphabet. 
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Нейрондық желі негізінде қазақ әліпбинің латын әріптерін тану 

П.М. Пирниязова*, Е.Ю.Сон, Д.Ж. Құлжан 

Satbayev University, Алматы, Қазақстан 

*Корреспонденция үшін автор: pirniyazova1974@gmail.com 

Аңдатпа. Бұл мақалада TensorFlow фреймворкін пайдалана отырып, нейрондық желі негізінде қазақ әліпбиінің 

латын әріптерін тану қарастырылады. Ол үшін turtle графикалық кітапханасының көмегімен латын әліпбиінің қазақ 

әріптерінің дерекқоры құрылады. Алгоритм әріптер үшін еңгізілген таңбалар үстінде операцияларды қолданады, 

мақсатты айнымалыны болжау үшін. Жүргізілген эксперименттер ұсынылған алгоритм латын қазақ әліпбиінің 

әріптерін танудың жоғары дәлдігін қамтамасыз ететіндігін көрсетті. Латын әліпбиінің қазақ әріптерін танудың есептеу 

алгоритмі әзірленді. Бағдарламалық жасақтама латын әліпбиінің әріптерін таниды. Алынған нәтижелер графикалық 

түрде суреттелген. 

Негізгі сөздер: тану, нейрондық желілер, перцептрон, синапс, салмақ матрицасы, пиксель матрицасы, қабаттар, 

қателер. 

Распознавание латинских букв казахского алфавита на основе 

нейронной сети 

П.М. Пирниязова*, Е.Ю. Сон, Д.Ж. Құлжан  

Satbayev University, Алматы, Казахстан 

*Автор для корреспонденции: pirniyazova1974@gmail.com 

Аннотация. В данной статье рассматривается распознавание латинских букв казахского алфавита на основе 

нейронной сети с использованием фреймворка TensorFlow. Для этого с помощью графической библиотеки turtle со-

здается база данных казахских букв латинского алфавита. Алгоритм использует операции над вставленными симво-

лами для букв, чтобы предсказать целевую переменную. Проведенные эксперименты показали, что предложенный 

алгоритм обеспечивает высокую точность распознавания букв латинского казахского алфавита. Разработан вычисли-

тельный алгоритм распознавания казахских букв латинского алфавита. Программное обеспечение распознает буквы 

латинского алфавита. Полученные результаты проиллюстрированы графически. 

Ключевые слова: распознавание, нейронные сети, перцептрон, синапс, весовая матрица, матрица пикселей, слои, 

погрешности. 
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