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Abstract. This article discusses the recognition of Latin letters of the Kazakh alphabet based on a neural network using the
Tensorflow framework. The paper provides an overview of existing recognition methods, including methods based on machine
learning. To do this, a database of Kazakh letters of the Latin alphabet is being created using the Turtle graphic library. A
computational algorithm for recognizing Kazakh letters of the Latin alphabet has been developed. The algorithm uses opera-
tions on labels entered for letters to predict the target variable. The model is trained on the prepared data and then evaluated
based on its performance on the validation dataset. The overall accuracy of the model is approximately 93.90%. This means
that about 93.90% of the model's predictions were correct. The paper uses two metrics for the accuracy Precision and com-
pleteness Recall classes. These metrics show whether the models work well by class, show information about the performance
of the model. The experiments have shown that the proposed algorithm provides high accuracy of recognition of letters of the
Latin Kazakh alphabet. The results are illustrated graphically. In the discussion of the results, a multiclass ROC curve is pre-
sented, which is a graphical representation of the performance of the classification model at all classification thresholds. The
performance of the model as a whole indicates the high performance of the classification model. The algorithm proposed in the
article for recognizing Latin letters of the Kazakh alphabet can be used in various applications, such as optical character recog-

nition (OCR) systems, automated verification of entered texts using mobile devices.
Keywords: recognition, neural networks, perceptron, synaps, weight matrix, pixel matri, layers, errors.

1. Introduction

The growth of digital technologies opens up many oppor-
tunities for working with data. The gradual transition of the
Kazakh language to the Latin script is a challenge to moderni-
ty and changes in modern realities, that is, there is a place of
identity and culture of the language. Looking into the history
and culture of the language, its changing history of Romaniza-
tion began at the beginning of the 20th century of the last
century. The idea of the transition of the Latin script of the
Kazakh alphabet of that time was to raise the culture of the
language and literacy of the population. The gradual transi-
tion then began as early as 1923 and officially  passed in
1929 of the last centuries. The Latin alphabet of that time
consisted of 30 letters with the need to add signs to them to
give specificity to the sounds of the Kazakh alphabet. The life
of the Latin alphabet at that time was short and it existed from
1929 to 1939. Based on the Latin script, a new Cyrillic alpha-
bet was prepared in the 1940s of the last centuries. This writ-
ing was based on Russian graphics, which consists of 42 let-
ters and considered the phonetic features of the Kazakh lan-
guage. The current transition of the Kazakh language to Latin
script is conditioned by the challenge of modernity, since after
gaining independence many post-Soviet countries switched to
Latin script.

In 2017, Kazakhstan approved the standard version of the
Latin script of the Kazakh alphabet. According to its specifics,
the new version of the Latin script of the Kazakh language is
much closer to the Turkish language, which emphasizes the
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convergence of the cultures of the language, the historical
culture of the Turkic peoples.

The current alphabet of the Latin script of the Kazakh lan-
guage has 32 letters. To date, the transition to Romanization
has already begun with basic documentation, the main docu-
mentation is produced in this writing. To facilitate the work of
translating text, books, to raise the culture of the language, it is
the phonetic expression of Kazakh letters, not allowing confu-
sion of letters shown on Figure 1.

99 -Aa, Fr-Gg, Hu-Nn, 6o - 06, Yy-Uu, Yy- ¥y
Figure 1. Letters of the Kazakh language

This underlines the relevance of the chosen topic of
recognition of Kazakh letters in Latin script. The Latin
graphics of the Kazakh alphabet use 32 letters, which is
shown in Figure 2.

Recognition of Latin letters of the Kazakh alphabet is an
important task in the field of computer vision and image
processing. Despite the fact that the Kazakh alphabet is based
on the Latin alphabet, there are some differences, such as
additional letters and punctuation marks.

Below we will provide reviews of research on the chosen
topic in the work [1] of the authors of domestic scientists, a
method for recognizing Latin letters of the Kazakh alphabet
based on deep learning is proposed. The method is based on
the use of a convolutional neural network, which is trained
on a data set consisting of handwritten and printed letters.
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Experimental results have shown that the proposed method
provides high recognition accuracy.
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Figure.2 Latin script of the Kazakh language

In [2], a method for recognizing Latin letters of the Kazakh
alphabet based on machine learning is proposed. The method
is based on the use of reference vector machines, which are
trained on a data set consisting of handwritten and printed
letters. Experimental results have shown that the proposed
method provides good recognition accuracy.

The paper [3] proposes a method for recognizing Latin
letters of the Kazakh alphabet based on statistical methods.
The method is based on the use of probabilistic models that are
trained on a data set consisting of handwritten and printed
letters. Experimental results have shown that the proposed
method provides satisfactory recognition accuracy.

Unlike the works of other authors, this article presents
algorithms constructed by the gradient descent method and
analyses of the results obtained.

All these articles are an overview of various methods. Each
of the methods has its advantages and disadvantages. Methods
based on deep learning provide high recognition accuracy, but
require large computational resources. Methods based on
machine learning provide good recognition accuracy and require
less computing resources than methods based on deep learning.

2. Materials and methods

To develop a computational algorithm for recognizing
Kazakh letters of the Latin alphabet, a model is introduced
according to which the recognition algorithm will be trained,
the model uses operations on labels introduced by us for
letters, for predictions of the target variable, that is, there is a
mapping from the space of labels to the space of target
predictions [9]:

a:X—Y

where a€A is a family of models. Next, rewriting the
model in the form - y , where y is in turn equal to
y =a(x,w,h)

Where X - is the label vector for the i-th letter, w- are the
model parameters (optimized by the model algorithm) h are
the hyperparameters of the model (optimized by those who
run machine learning algorithms). After the model is
selected, we begin to train it by dividing the training of the
model into training and test samples.

A training sample - is a data set for which we know the
«letter models — target variable» for each letter from the
sample.
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A test sample - is a data set for which only the labels of
the letter model are known. In order to assess how bad or

good a given model is, we use the loss function L(y;,Y;)to

assess the quality of the model. For a specific letter y; —y;
the prediction of the model and the real value of the target
variable coincide, then the loss functions L(y;,Y;)takes

small values. If the prediction of the model and the real value
differ, then the loss function takes on large values. Using the
data from the training sample, we estimate the loss
functional. The loss functional is the average value of the
loss function for all labels from the training sample:

1
Q(a, X) :ﬁszl L(yi»a(x;,w,h))
Therefore, the purpose of the training will be as follows

Q(a, X) > min
aeA

where ae A a family of models.During the training
process, we must select such parameters and
hyperparameters of the model that best predict the target
values in the training sample.

In the learning process, there is a certain pattern in which
simple models contain a limited number of features and the
dependence between variables have large values of loss
functions, complex models that have many features and there
are complex dependencies between variables may have low
values of loss functions. When training the model, the loss
functions on the test data may initially decrease, but at some
point a situation may arise when the losses on the test sample
begin to grow again, and the losses on the training sample
continue to fall. Using an approach called validation in this
case, we take a «piece» of the training sample, postponing it,
train the model on the rest of the training sample and test it
on the deferred «piece». This type of validation is called the
use of deferred sampling [9] (train_test_split), Figure 3.

Figure 3. Deferred sampling scheme

Preparing data for machine
TensorFlow and Keras frameworks.

The model learning algorithm is described below:

1. Import libraries: The necessary modules and functions
are imported from TensorFlow, Keras and Scikit-Learn.
This includes layers and models from Keras, a utility for
converting labels to a categorical format, functions for
dividing data into training and test samples, as well as a
module for preprocessing.

2. Image preprocessing: The
preprocess_images_with_opencv function, defined earlier, is
called to convert a set of images and their labels into a format
suitable for training the model. The result is stored in the
variables preprocessed_data and preprocessed_labels.

3. Preparation of input data and labels: X is initialized as a
preprocessed_data containing images. y is initialized as
preprocessed_labels containing labels.

learning models using
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4. Encoding of labels: An instance of LabelEncoder is
created to convert labels from text format to numeric format.
Labels are encoded using the fit and transform method of this
encoder.

5. Converting labels to one-hot format: The to_categorical
function from Keras is used to convert numeric labels to one-
hot encoding format. This is a common practice when
processing categorical data for classification tasks.

The comment indicates that 60 classes are assumed (there
is a slight inaccuracy in the comment mentioning 26 classes,
which may be a discrepancy with the actual number of classes
in this case). This code prepares data for neural network
training by processing images and converting labels into a
format suitable for classification models in
TensorFlow/Keras.

Importing the Tensorflow framework, Keras and their
components, as well as functions for dividing data into training
and validation samples, we divide the data into training and
validation samples (Figure 2.) while using the train_test_split
function from the Scikit-Learn library to separate data (X) and
labels (y) into training (X_train, y_train) and validation
(X val, y val) samples. 20% of the data is allocated for
validation (test_size=0.2).

Next, repeating the process of dividing the sample into
training and validation, we use n-Fold cross-validation. The
training sample is divided into n parts of the same volume,
which contain different objects. N iterations are performed and
at each iteration the model is trained on (n-1) parts of the
training sample, and the model is also tested on a training
sample that did not participate in the training.

The basic Keras data structure is a model, a way of
organizing layers. There are two basic types of models
available in Keras: the Sequential model and the Model class
used with the functional API. We used the Sequential model,
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which creates CNN models using a sequential stack of layers
(models Sequential).

Convolutional layers are the main block of a convolutional
non-linear network. The convolution layer includes its own
filter for each channel, the convolution core, which processes
the previous layer in fragments (summing up the results of the
matrix product for each fragment). The weight coefficients of
the convolution core (a small matrix) are unknown and are set
during the learning process. The peculiarity of convolutional
layers is the relatively small number of parameters set during
training.

Conv2D - is a 2D mesh layer (for example, spatial
convolution over images). This layer creates a convolution
core to create an output tensor. The model includes several
convolutional layers (Conv2D) with RelLU activation and
pooling layers (MaxPooling2D), as well as fully connected
layers (Dense) and a regularization layer (Dropout). The
output layer uses the softmax activation function to classify
images into several classes. The method of configuring the
model for training includes the compilation optimizer ‘adam’,
the loss function ‘categorical crossentropy’ and the metric
‘accuracy'. The model is compiled with the ‘adam’
optimizer, the ‘categorical crossentropy’ loss function
(suitable for multiclass classification) and the ‘accuracy’
metric.

The model is trained on X_train and y_train data indicating
the number of epochs (epochs), batch size (batch_size) and
validation data (X_val, y_val). The number of epochs and
batch size can be adjusted depending on the specifics of the
task and the capabilities of the computing system.

The results obtained: The model will be trained on the
prepared data, and then evaluated based on its performance on
the validation dataset (Figure 4).
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Figure 4. Convolutional neural network (CNN) training using Tenzorflow and Keras for image classification

Analysis of the results obtained. The analysis of the error
matrix shows the following:

- The overall accuracy of the model is approximately
93.90%. This means that about 93.90% of the model's
predictions were correct.
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- Accuracy by class (Precision), Completeness (Recall) and
F1-measure (F1 Score) for each class show different levels of
performance. These metrics are useful for determining how
well the model works for each specific class.
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For example: For a class with index 0, accuracy is 95.85%,
completeness is 93.38%, and F1 measure is 94.60%.

For a class with an index of 25, accuracy is 86.56%, com-
pleteness is 65.71%, and Fl-measure is 74.71%. This may
indicate that the model is having difficulty correctly recogniz-
ing this class.

These metrics provide valuable information about the per-
formance of the model and can be used to further improve and
customize the model (Figure 5).

True: 15, Prid: 15 True: 14, Pred: 14 Tue: 23, Pred: 23 True: 47, Prid: 47 Twe: 17, Prec: 17 Tue: 29, Pred: 29 True: 5, Pred: 5

T d p G

True: 11, Pred: 11 True: 18, Predt: 18 True: 30, Pred: 30

a ; Noe g

Figure 5. The model

Analyzing the visualization of tsn, several observations
can be made regarding the distribution (Figure 6).
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Figure 7. Multiclass ROC curve (model representations at all classification thresholds)

By analyzing the visualization of t-SNE, several
observations can be made regarding the distribution and
structure of the data:

1. Data clustering: t-SNE has effectively mapped
multidimensional data into a two-dimensional space in such a
way that the data is grouped into clusters. Clusters with the
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same color represent data of the same class. Well-defined and
isolated clusters can indicate good class distinctiveness.

2. Overlap between clusters: Some clusters show overlap
or proximity to other clusters. This overlap may indicate the
likelihood of classification errors, since the model may
mistakenly assign data from one cluster to a neighboring one.
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This is especially noticeable for clusters in the central part of
the graph.

3. Outliers: The graph shows points that do not belong to
explicit clusters or are far from their main groups. These
outliers may represent abnormal data or errors in the data that
may make classification difficult.

4. Cluster density: Some clusters are denser and more
compact, indicating high consistency of data within the class.
While more scattered clusters may indicate intra-class
variability.

5. Class homogeneity: If clusters are distinct, separate
groups, this may indicate homogeneity within classes. If the
clusters are blurred and fuzzy, this may indicate heterogeneity
or class mixing.

Figure 7 below shows a multiclass ROC curve (Receiver
Operating Characteristic curve), which is a graphical
representation of the performance of the classification model
at all classification thresholds.

3. Results and discussion

Figure 6 shows a multiclass ROC curve (Receiver
Operating Characteristic curve), which is a graphical
representation of the performance of the classification model
at all classification thresholds. The main aspects of this graph
are:

Each line of the ROC curves corresponds to one class.
The ideal model will have a ROC curve going straight up the
sensitivity axis (True Positive Rate) and then to the right
along the specificity axis (1 - False Positive Rate), which
means that the model has a perfect difference between
classes.

The area under the curve (AUC) close to 1.00 indicates a
very high performance of the model in the classification of
this class. Ideally, the AUC should be as close to 1 as
possible. In this graph, for almost all classes, the AUC is
1.00, which indicates an exceptionally high classification
accuracy.

The diagonal dotted line represents a random guess. Any
ROC curve above this line indicates better performance than
random guessing.

The ROC curve for class 25 has an AUC lower than 1.00
(the exact value is not visible, but it is indicated that it is less
than 1). This indicates that the classification for this class is
not ideal and there is some room for error.

The performance of the model as a whole indicates a high
performance of the classification model, since most classes
have an AUC of 1.00. This means that the model separates
positive and negative cases very well for most classes.

It is important to note that although the ROC curve can
provide performance information for all thresholds, in
practice it is also important to look at other metrics such as
accuracy, completeness, and F1 measure to get a complete
picture of the model's performance.

4, Conclusions

Recognition of Latin letters of the Kazakh alphabet is an
important task in the field of computer vision and image
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processing. The gradient descent method was used in the
study. The Kazakh alphabet, based on Latin, has some differ-
ences, such as additional letters and punctuation marks.

The paper provides an overview of existing recognition
methods, including methods based on machine learning. The
algorithm proposed in the article for recognizing Latin letters
of the Kazakh alphabet can be used in various applications,
such as optical character recognition (OCR) systems, auto-
mated verification of entered texts using mobile devices.

The algorithm uses operations on labels entered for letters
to predict the target variable. The experiments have shown
that the proposed algorithm provides high accuracy of recog-
nition of letters of the Latin Kazakh alphabet.
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HeiipoHabIK KeJli Heri3iHge Ka3ak dJIINOUHIH JATHIH dPiNTepiH TaHy

I1.M. IMupuussosa’, E.JO.Con, JI.)K. Kynkan
Satbayev University, Arvameor, Kazaxcman
*Koppecnonoenyus ywin asmop:: pirniyazoval974@gmail.com

Anparna. byn makanaga TensorFlow ¢peliMBOpKiH maiinanaHa OTHIPBIN, HEHPOHIBIK JKeJll HETi3iHAe Ka3ak SMiNnOuiHiH
JaTBIH 9piNTepiH TaHy KapacTelpbutaabl. Ou ymriH turtle rpadukanblk KiTanxaHachIHBIH KOMETIMEH JIaThIH QJINOUIHIH Ka3ak
opinTepiHiH AEpPEeKKOPHl KYPbUIAbl. AJTOPUTM OpiNTep YIIIH EHri3iireH TaHOalap YCTiHAE OlepauysuiapAbl KOJIaHaIbl,
MaKCcaTThl aNHBIMANBIHBI OoJDKay YVImiH. JKYpri3inreH >KCIepHMEHTTEp YCHIHBUIFAH AITOPHTM JIATBIH Ka3akK ONMiNOHiHIH
opinTepiH TaHYIBIH KOFaPHI AOJIITiH KAMTaMachl3 €TETiHAITIH KopceTTi. JIaThIH oninmOuiHiH Ka3aK opiNTepiH TAHYABIH eCenTey
anroputMi d3ipieHai. barmapmamanslk jkacaKkTaMa JATHIH QNMINOWiIHIH opinTepiH TaHWUABI. AJBIHFAH HOTIDKENEp TpaduKajbK
TYpIE CYpEeTTEIreH.

Hezizzi co30ep: many, HeUpoOHObIK Jceninep, nepyenmpoH, CUHANC, CATMAK MAMPUYACHL, NUKCETb MAMpUYacsl, Kabammap,
Kamenep.

Pacno3naBanue JJaTHHCKUX OYKB Ka3aXCKOro ajgaBuTa HA OCHOBE
HEMPOHHOM CeTH

I1.M. Iupnussosa’, E.IO. Con, JI.XK. Kynkan

Satbayev University, Arvamoi, Kazaxcman
*Aemop ons koppecnonoenyuu: pirniyazoval974@agmail.com

AnHoTanusi. B naHHOH cTaTthe paccMmarpuBaeTcsl pacno3HaBaHUE JIATHHCKUX OYKB Ka3axCKOro aidaBHTa Ha OCHOBE
HEWPOHHOW CeTH ¢ ucnoib3oBanueM (peiimBopka TensorFlow. [lis sToro ¢ momoinsio rpaduyeckoit oubmuoreku turtle co-
3aercst 6a3a JaHHBIX Ka3aXCKMX OyKB JIATHHCKOTO aliaBHTa. AJITOPUTM HCIOJIB3YET ONEPAMy Haj BCTABICHHBIMH CHMBO-
JaMu aisi OyKB, 4TOOBI MpEAcKa3aTh IEJEeBYI0 NepeMeHHyo. [IpoBe/ieHHbIe SKCIEPUMEHTHI TTOKAa3allH, YTO MPEAI0KEeHHbIH
ANrOpUTM 00ecredrBaeT BEICOKYIO TOYHOCTh PACMO3HAaBaHUS OYKB JATHHCKOTO Ka3zaxckoro ajdasura. PazpaboTaH BBIYHCIH-
TENBHBIA ANTOPUTM PACIO3HABAHUS Ka3axCKUX OYKB JiaTHHCKOro andasura. [IporpamMmHoe obecrieueHne pacro3HaeT OYKBbI
natuHcKoro andasura. [lonyueHHbIe pe3ysIbTaThl NPOUILIFOCTPUPOBAHBI TPaUUECKH.

Knioueevie cnosa: pacnosnasanue, Heliponnvle cemu, NepyenmpoH, CUHANC, 6eCOB8As MaAMpUuya, Mampuya nuxcenetl, ciou,
nozpewtHocmu.
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