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Abstract. Autonomous driving technologies have garnered significant attention in recent years, promising transformative
impacts on transportation systems. The landscape of transportation is undergoing a profound transformation with a focus on
achieving autonomy in vehicles, ranging from advanced driver assistance systems (ADAS) to the ambitious goal of fully au-
tonomous vehicles. This article delves into the complexity of autonomous driving, exploring both the advancements driving
this paradigm shift and the intricate challenges impeding its seamless integration into daily life. The journey toward autonomy
involves breakthroughs in sensor technology, artificial intelligence, and connectivity, with a crucial emphasis on sensor fusion
for precise navigation. The review highlights key advancements in machine learning, computer vision, and sensor technologies
that underpin autonomous driving systems, offering insights into their current capabilities and limitations. The synthesis of this
review aims to provide a holistic understanding of the current state of autonomous driving, facilitating informed discussions
among researchers, practitioners, and the broader public. By shedding light on both achievements and challenges, this paper
contributes to the ongoing discourse on the future of autonomous driving and informs the development of strategies to address

the complexities inherent in achieving widespread adoption of this transformative technology.
Keywords: autonomous driving, self-driving vehicles, artificial intelligence, sensor fusion, deep learning.

1. Introduction

The landscape of transportation is undergoing a transform-
ative shift, marked by the relentless pursuit of autonomy in
vehicles. From cutting-edge advanced driver assistance sys-
tems (ADAS) to the ambitious vision of fully autonomous
vehicles, delivery robots, the automotive industry is at the
forefront of technological innovation. In this article, we delve
into the intricate tapestry of autonomous driving, examining
both the common practices that propel this paradigm shift and
the multifaceted challenges that cast a shadow on its seamless
integration into our daily lives.

The journey towards autonomous driving has been charac-
terized by a convergence of breakthroughs in sensor technolo-
gy, artificial intelligence and deep learning algorithms, con-
nectivity, and mapping. Vehicles equipped with an array of
sensors, including cameras, LiDAR, radar, and ultrasonic
sensors, engage in the intricate dance of sensor fusion. This
practice involves the meticulous integration of data from di-
verse sensors, creating a composite and nuanced understanding
of the vehicle's surroundings. Sensor fusion is the linchpin of
perception for autonomous driving, allowing to navigate the
complex and dynamic environment with high precision and
error tolerance.

However, according to Muhammad et al. significant im-
provements in sensor fusion technologies and hardware manu-
facturing still demand further attention in research and aca-
demia before full industry deployment as it serves the key role
in reducing road accidents and saving human lives [1]. For
instance, only in Kazakhstan approximately 15 thousand peo-
ple were injured because of over 10 thousand road incidents
occurring in the preceding year [2]. There has been a notable
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21% increase in deaths counts. Further analysis suggests that
over 86% of accidents are caused by drivers.

Machine learning and artificial intelligence technologies
empower deep neural networks to learn from vast datasets,
adapt to diverse driving conditions, and make split-second
decisions. This can hopefully dramatically reduce the number
of road accidents and subsequent deaths. According to the
National High-way Traffic Safety Administration (NHTSA),
over 94% of incidents are usually caused by human errors [3].
The advent of deep learning, the widespread deployment of
Automated Driving Systems (ADSS) is projected to reduce not
only the number of accidents, but also atmospheric emissions,
stress, increase traffic efficiency and overall social wellbeing
by nearly $800 billion in monetary value by 2050 [4].

Despite these notable strides, the road to fully autonomous
driving is fraught with challenges that demand meticulous
consideration. Safety concerns loom large, requiring the indus-
try to address unpredictable variables such as adverse weather
conditions, erratic human drivers, and unexpected obstacles.
Striking a balance between achieving technological reliability
that matches or surpasses human drivers in all situations and
ensuring the utmost safety is a formidable challenge.

The regulatory and legal landscape presents another intri-
cate puzzle. The accelerated pace of technological develop-
ment has outpaced the establishment of comprehensive
frameworks governing autonomous driving. Questions of
liability in the event of accidents, data privacy, and the stand-
ardization of testing procedures demand urgent attention to
facilitate the widespread adoption of autonomous vehicles.
Harmonizing these regulations on a global scale emerges as a
pressing necessity.
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Ethical dilemmas cast a philosophical shadow on the path
to autonomy. Autonomous vehicles are confronted with situa-
tions where moral decisions must be made, such as choosing
between minimizing harm to the vehicle occupants and avoid-
ing harm to pedestrians. Resolving these ethical conundrums
requires a delicate balance between societal values, legal con-
siderations, and technological capabilities.

In an era where vehicles are increasingly connected and re-
liant on software, cybersecurity risks add an additional layer of
complexity. Autonomous vehicles, with their extensive net-
work connectivity, become susceptible to hacking, potentially
leading to severe consequences. Establishing robust cyberse-
curity measures to protect vehicle systems from unauthorized
access and manipulation is an ongoing challenge that requires
constant vigilance.

As we navigate through the intricate landscape of autono-
mous driving, it becomes evident that this technological fron-
tier is not merely a convergence of hardware and software but
a holistic reimagining of transportation. The promise of safer,
more efficient, and accessible mobility beckons, but not with-
out overcoming the intricate web of challenges that intertwine
with progress. Researchers, engineers, policymakers, and
society at large are integral players in this transformative nar-
rative, shaping the future of autonomous driving.

1.1. Autonomous driving prospects and social challenges

The widespread adoption of ADSs is imminent. According
to Moreno et al. the availability of vehicles results in increased
financial and biodiversity burden to cities [5]. Moreover, re-
cent COVID-19 events have sped up Artificial Intelligence
(Al) adoption and subsequently greater enhancements of Deep
Learning (DL) algorithms. This has led to the re-emergence of
an old concept of smart cities or rebranded as the «15-Minute
City», closely discussed by Moreno et al. in his work. He
mentions that this concept has been depicted as the Sustainable
Development Goal 11 of United Nations. And one of the sub-
goals revolves around removing or, at least, replacing non-
green vehicles from cities with their electric counterparts.
Consequently, this leads to autonomous driving as new oppor-
tunities arise.

Yurtsever and his team foresees the following potential
impacts on society [6]:

1) ADSs will help mitigate traffic accidents, improve traf-
fic efficiency, and reduce emissions by stabilizing the city
ecosystem.

2) A new opportunity shall arise revolving around Mobility
as a Service (MaaS), which already has a noticeable impact on
logistics.

However, Maas can also play a major role in other areas of
human life, not limited to logistics. Potentially, with an in-
creased growth of elderly people, ADSs technology can help
them improve their quality of life and productivity. Not to
mention a steady shift towards MaaS consumption by masses
as opposed to vehicle-ownership. According to Yurtsever’s et
al. research, vehicle ownership is projected to become 50:50
by 2030.

As ADSs become more advanced and intricate, they gain
the ability to operate in indeterministic environments. With its
fast-paced evolution, there is a need to monitor and classify the
level of automation. According to the Society of Automotive
Engineers (SAE) there are 5 levels of driving automation. The
taxonomy mentions level zero as no automation at all. It’s up
to the driver to handle every aspect of driving. Level one de-

21

picts primitive driver assistance, whereas level two includes
partial automation. These systems usually have emergency
braking and collision avoidance mechanisms integrated into
vehicles to support the drivers in emergency situations. SAE
note that the difficulties start arising from level three and up-
ward.

The challenge of level three automation lies in conditional
automation: in cases when the driver needs to take over the
control during an emergency. In addition, level three automa-
tion is limited to certain operational domains. For example,
highways. During an investigation, it has been proven that the
control takeover from automated mode to manual mode usual-
ly results in traffic accident risks. Thus, this is yet to be solved.

Level four automation adds on a whole new complexity
layer on top of existing technology. It includes automatic de-
parture, parking, and routing. Level five automation steps up
the game by making the vehicle operate seamlessly on any
road network, any weather condition or indeterministic situa-
tions. Nonetheless, both levels of automation require special
domain infrastructure to operate well. At the current state of
urban roads, the environmental variables are still highly inde-
terminate, which are difficult to predict accurately.

For example, Tesla’s ADS failed to differentiate a white
truck colliding with the vehicle and killing the driver [8].
Therefrom arise the ethics dilemma: who’s responsible, and
how the system should normally behave? Should it prioritize
the driver’s wellbeing or the pedestrians. These questions need
careful consideration.

2. System components and architectures

This chapter describes the software and hardware used by
the ADS researchers, developers and engineers and their
intrinsic details. We explore the intricacies of deep learning-
based decision-making architectures and their components.
ADS are designed to operate independently by processing
streams of incoming data from different on-board sensors.
These can include cameras, radars, global positioning sys-
tems (GPS), light detection and rangings (LiDARS), ultrason-
ic sensors and many more.

Various components of ADS architectures are usually
based on Al and Deep Learning technologies but are not
limited to these. Sometimes a classical approach is taken that
involves non-learning-based components. Nonetheless, these
systems still have a common architecture at its core: percep-
tion, localization, high-level planning, low-level planning
(behavior arbitration) and motion controllers. The system
may consist of an end-to-end learning approach where the
sensory input data is mapped to motion controllers or of an
action pipeline-based approach where decisions are comput-
ed in a pipeline-based fashion [9].

2.1. Key technologies

The ADS systems involve multiple components such as
computer systems, robotics, mechanical engineering, machine
and deep learning, communication, systems engineering and
many more resulting in a complex autonomous device of its
own. The actual computing system usually includes a set of
similar technologies to benefit from its advantages and over-
come the disadvantages of the devices on-board. For example,
the ADS system usually includes a variety of sensors: cameras,
radar, LIDAR, ultrasonic sensors, and GPS.

Cameras play a pivotal role in the sensor suite of auton-
omous vehicles, contributing to their ability to perceive and
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interpret the surrounding environment. Cameras are primari-
ly employed for environmental perception, capturing visual
information from the vehicle's surroundings. They act as the
«eyesy of the autonomous system, providing a real-time feed
of the road, traffic, pedestrians, and other relevant objects.
The cameras give a straightforward 2D view of the surround-
ings, making it useful for object classification and lane detec-
tion. Lane markings, road edges, and other lane-related in-
formation are extracted from the camera feed. Additionally,
cameras contribute to tracking the vehicle's position within
the lane and adjusting its trajectory accordingly. However,
cameras also face challenges such as adverse weather condi-
tions, low-light situations, and potential occlusions. To miti-
gate these challenges, sensor fusion and redundancy strate-
gies are often employed, combining camera data with infor-
mation from other sensors to enhance overall reliability and
safety in autonomous driving systems.

Whereas cameras capture visual information in the form
of images or video frames using visible or infrared light,
radars use radio waves to detect objects and measure their
distance, speed, and angle. They provide long-range detec-
tion and are less affected by environmental conditions but
typically have lower resolution. The generated data size of
radars is small: around 10-100 KB per second [10].

Like radars, LiDARs emit laser beams to measure the time
it takes for the light to reflect off objects, providing precise
distance and 3D mapping. They have long-range detection and
high resolution in three dimensions, providing detailed spatial
information. The performance is also notably good. LIiDARS
are widely used in object detection, distance estimation and
edge detection of still objects. The sensor is less effected by
weather conditions than camera, but the competitive cost is
high, which restricts its wide adoption in ADS.

2.2. Critical ADS tasks

The utilization of machine learning, particularly deep
neural networks, is a cornerstone in autonomous driving. The
entire task of navigating through a city can be subdivided
into six major components: road detection, lane detection,
vehicle detection, pedestrian detection, collision avoidance
and traffic sign detection.

Road detection aims at recognizing road boundaries and
other areas where autonomous vehicles are allowed to drive. A
common practice is to use convolutional neural networks
(CNNs) for such tasks. There are also other works presenting
an end-to-end model called RBNet for road detection in a
single network [1]. Lane detection, like road detection, is re-
sponsible for keeping within the vehicle lane on roads, thus,
ensuring vehicle safety and minimizing risk of collision.

Vehicle and pedestrian detection are vital part of ADS sys-
tem. It must recognize other vehicles and objects, and estimate
their sizes, shapes, and relative speed to navigate around the
city. Pedestrian-vehicle accidents are a common issue. The
ADS need to learn to differentiate humans from other objects,
track all possible pedestrians to avoid collision. Wang et al.
proposed a new system with pedestrian body parts semantic
detection using DNNs and contextual information to build
accurate location [11].

2.3. ADS architectures

A robust architecture is directly responsible for ADS sys-
tem performance. It defines how the entire system is controlled
and managed. A good system architecture can help autono-
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mous vehicles computer and analyze voluminous amounts of
data more efficiently and produce better predictions. There are
many approaches to how to design these systems.

One popular approach is an ego-only system. This system
carries all the necessary technology on board and is inde-
pendent of other ADS vehicles, always making driving deci-
sions in a single self-sufficient manner. Whereas connected
ADS may or may not depend on each other, which is decided
by the infrastructure and situation on the road, and the need
to exchange the information when such arises.

Another approach is a modular system [12]. It is struc-
tured as a pipeline linking together different components of
sensory input. The typical pipeline looks like feeding data
streams from sensors into object detection and locations
modules. The produced information is then used for scenery
prediction and navigation; decision-making is generated and
fed to the control module. The advantage of such a system is
in its modularity, but so is its disadvantage: the error is prop-
agated along the entire pipeline with small errors resulting in
major system failures.

The third approach was mentioned earlier: end-to-end driv-
ing. This approach revolves around the model trying to imitate
an expert human driver. This approach is not fully end-to-end
though, as it needs an additional step to generate the driving
actions. But the question here is should the ADS system drive
like a human or not? The end-to-end driving approach is an
emerging promising technology. It learns to interact with the
environment through repeated failures, but lacks safety-
measures and interpretability, making it unpopular.

3. Challenges and corner cases

The pursuit of autonomous driving technology leads to
groundbreaking advancements and rapid adoption, equally, a
spectrum of intricate challenges and corner cases. As engi-
neers and researchers push the boundaries of innovation, they
grapple with scenarios that transcend the ordinary, demand-
ing solutions that can navigate the unpredictable intricacies
of real-world environments.

In recent years, the number of news or road accidents in-
volving ADS systems that led to fatalities has increased.
Early adoption of self-driving vehicles had led to five cases
of ADS failures: four of which are attributed to Tesla and
one to Uber [13]. The first two cases happened in 2016. The
autopilot failed to recognize the truck in both cases, taking it
for open space the second time. On the third incident the
ADS system failed to recognize the highway divider in 2018.
And in 2019 the autopilot crashed unable to recognize the
semitrailer. With regards to Uber, the ADS system failed to
recognize pedestrians walking.

There are many challenges that researchers and engineers
must overcome to make automated driving safe. One such
challenge is how to handle irrational or unpredictable human
behavior. Human drivers remain a formidable challenge for
autonomous systems. From unpredictable decision-making at
intersections to sudden lane changes, interpreting and pre-
dicting human actions present complex challenges that re-
quire nuanced solutions. Handling the idiosyncrasies of hu-
man behavior in diverse cultural and driving contexts adds an
additional layer of complexity.

Another challenge is adverse weather conditions. More
particularly, poor illumination and changing appearance. The
main drawback of using cameras has to do with lighting
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conditions. It is inherently difficult to deal with low-light
conditions. For example, snow may drastically change the
appearance of city streets or roads, hiding the key features of
scenes such as road lanes. To solve this issue, a sensor fusion
strategy is employed as described above. Although, these
strategies are not robust. Driving in direct sunlight may cause
problems to ADS vision systems anyway as it is also suscep-
tible to direct sun glare. Paul et al. proposed a combination of
HDR algorithms to improve autopilot’s performance [14].

There is also an ongoing debate on how to handle failure
detection and diagnostics. How to define sensor failure?
What constitutes failure? There is no pre-defined standard.
Moreover, there is no reliable study or standard on how to
detect sensor failures. Even if the sensors are working
properly, how should the sensor data failure be detected in
real time scenarios? The sensors may be working correctly,
but the generated data may not reflect the actual scenario. An
example may be sensor blocking or occlusion. The last type
of failure is algorithmic. Hazardous weather conditions may
directly affect algorithm’s performance. Sometimes utilizing
priorly collected information is important. Therefore, devel-
oping robust algorithms still proves to be a challenge.

Autonomous driving systems also pose a new challenge
to their developers: cyberattack protection. With a wide
adoption of autonomous cars cybersecurity becomes an im-
portant part of ADS. There is no absolute security, but basic
protection from spoof attacks, denial of service makes it vital
for human safety. The data streams must be checked before
proceeding further to sensor fusion. For instance, an occlud-
ed roadblock detected by radars may be corrected by the
camera data and vice versa.

Lastly, the final issue is to manage ADS energy con-
sumption, effectiveness, and costs. Finding the balance be-
tween the three proves to be a real challenge.

4, Conclusions

The journey toward autonomy is defined by break-
throughs in sensor technology, artificial intelligence, deep
learning algorithms, connectivity, and mapping. Sensor fu-
sion, a linchpin of perception in autonomous driving, intri-
cately weaves data from an array of sensors to create a nu-
anced understanding of the vehicle's surroundings. However,
the journey is not without its tribulations.

Safety concerns loom large, necessitating meticulous atten-
tion to unpredictable variables such as adverse weather condi-
tions, erratic human drivers, and unexpected obstacles. The
regulatory and legal landscape poses a puzzle, demanding
swift attention to establish comprehensive frameworks govern-
ing autonomous driving. Ethical dilemmas cast philosophical
shadows, requiring a delicate balance between societal values,
legal considerations, and technological capabilities.

The imminent widespread adoption of Automated Driv-
ing Systems (ADSs) holds promises and social challenges.
The advent of smart cities, propelled by Al adoption and
enhanced Deep Learning algorithms, envisions a shift to-
wards sustainable, efficient urban living. The rise of Mobility
as a Service (MaaS) emerges as a transformative force, po-
tentially improving the quality of life for the entire popula-
tion and reshaping the landscape of vehicle ownership.

The diverse architectures of ADSs, from ego-only sys-
tems to modular pipelines and end-to-end driving approach-
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es, offer insights into the myriad ways researchers and engi-
neers approach the design and functionality of autonomous
systems. Each architecture comes with its advantages and
challenges, emphasizing the need for ongoing innovation and
refinement.

References

[1] Muhammad, K., Ullah, A, Lloret, J., Del Ser, J., & de Albu-
querque, V.H.C. (2020). Deep learning for safe autonomous
driving: Current challenges and future directions. IEEE Transac-
tions on Intelligent Transportation Systems, 22(7), 4316-4336.
https://doi.org/10.1109/T1TS.2020.3032227
Goverments Report. (2022). The number of road accidents in
Kazakhstan  increased by  8.9%. Retrieved  from:
https://Aww.gov.kz/memleket/entities/pravstat/press/news/detail
s/444039?lang=ru
Singh, S. (2015). Critical reasons for crashes investigated in the
national motor vehicle crash causation survey. Washington, DC,
USA, Tech. Rep. DOT HS 812115. Retrieved from:
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/8121
15
Montgomery, W.D., Mudge, R., Groshen. E.L., Helper. S.,
MacDuffie, J.P. & Carson, C. (2018). America’s workforce and
the self-driving future: Realizing productivity gains and spurring
economic growth. Securing America’s Future Energy, Washing-
ton, DC, USA. Retrieved from:
https://avworkforce.secureenergy.org/wp-
content/uploads/2018/06/Americas-Workforce-and-the-Self-
Driving-Future Realizing-Productivity-Gains-and-Spurring-
Economic-Growth.pdf
Moreno, C., Allam, Z., Chabaud, D., Gall, C. & Pratlong, F.
(2021). Introducing the «15-Minute City»: Sustainability, resili-
ence and place identity in future post-pandemic cities. Smart Cit-
ies, 4(1), 93-111. https://doi.org/10.3390/smartcities4010006
Yurtsever, E., Lambert, J., Carballo, A. & Takeda, K. (2020). A
survey of autonomous driving: Common practices and emerging
technologies. IEEE access, (8), 58443-58469.
https://doi.org/10.1109/ACCESS.2020.2983149
Standatrs. (2016). Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles. Re-
trieved from:
https://www.sae.org/standards/content/j3016 201401/
McFarland, M. (2019). Who’s Responsible When an Autono-
mous Car Crashes? Retrieved from:
https://money.cnn.com/2016/07/07/technology/tesla-liability-
risk/index.html
Grigorescu, S., Trasnea, B., Cocias, T. & Macesanu, G. (2020).
A survey of deep learning techniques for autonomous driving.
Journal of Field Robotics, 37(3), 362-386.
https://doi.org/10.1002/rob.21918
[10] Liu, L., Lu, S., Zhong, R., Wu, B., Yao, Y., Zhang, Q. & Shi, W.
(2020). Computing systems for autonomous driving: State of the
art and challenges. IEEE Internet of Things Journal, 8(8), 6469-
6486. https://doi.org/10.1109/J10T.2020.3043716
[11] Wang, S., Cheng, J., Liu, H., Wang, F. & Zhou, H. (2018). Pe-
destrian detection via body part semantic and contextual infor-
mation with DNN. IEEE Transactions on Multimedia, 20(11),
3148-3159. https://doi.org/10.1109/TMM.2018.2829602
[12] Chen, C., Seff, A., Kornhauser, A. & Xiao, J. (2015). DeepDriv-
ing: Learning affordance for direct perception in autonomous
driving. IEEE International Conference on Computer Vision
(ICCV), 2722-2730. https://doi.org/10.1109/ICCV.2015.312
[13] Paul, N. & Chung, C. (2018). Application of HDR algorithms to
solve direct sunlight problems when autonomous vehicles using
machine vision systems are driving into sun. Computers in In-
dustry, 98, 192-196.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]



http://doi.org/10.47366/sabia.v5n1a3
https://doi.org/10.1109/TITS.2020.3032227
https://www.gov.kz/memleket/entities/pravstat/press/news/details/444039?lang=ru
https://www.gov.kz/memleket/entities/pravstat/press/news/details/444039?lang=ru
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://avworkforce.secureenergy.org/wp-content/uploads/2018/06/Americas-Workforce-and-the-Self-Driving-Future_Realizing-Productivity-Gains-and-Spurring-Economic-Growth.pdf
https://avworkforce.secureenergy.org/wp-content/uploads/2018/06/Americas-Workforce-and-the-Self-Driving-Future_Realizing-Productivity-Gains-and-Spurring-Economic-Growth.pdf
https://avworkforce.secureenergy.org/wp-content/uploads/2018/06/Americas-Workforce-and-the-Self-Driving-Future_Realizing-Productivity-Gains-and-Spurring-Economic-Growth.pdf
https://avworkforce.secureenergy.org/wp-content/uploads/2018/06/Americas-Workforce-and-the-Self-Driving-Future_Realizing-Productivity-Gains-and-Spurring-Economic-Growth.pdf
https://doi.org/10.3390/smartcities4010006
http://dx.doi.org/10.1109/ACCESS.2020.2983149
https://www.sae.org/standards/content/j3016_201401/
https://money.cnn.com/2016/07/07/technology/tesla-liability-risk/index.html
https://money.cnn.com/2016/07/07/technology/tesla-liability-risk/index.html
https://doi.org/10.1002/rob.21918
https://doi.org/10.1002/rob.21918
https://doi.org/10.1109/JIOT.2020.3043716

K. Saidov et al. (2023). Computing & Engineering, 1(1), 20-24

ABTOHOM/IBI KYPTi3yliH KaJIIbI TI;KipuOeaepi MeH MiHaeTTepiHe
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AHgaTna. ABTOHOMIBI JKYPIi3y TEXHOJIOTHSUIAPBI COHFBI KBUINApBl aWTapibIKTail Hasap aymaphll, Kemik XKyHenepine
TpaHChOpMAIMSIIBIK ocep eredi. Kok MHIyCTpHACH XYpPTi3yllire KoMeK KOpCeTyImiH O3BIK xyhenepiHeH (ADAS) Tombik
ABTOHOM[B! KOJNIKTEPiH ©pPIILT MaKcaThlHA NIeHiH KOJIKTepAiH aBTOHOMMSACBIHA KON KETKi3yre OarbITTalFaH TEpeH ©3-
repictepai 6actan kemripyne. by makamama aBTOHOMABI XKYPTi3yAiH KYpAENUJIiTiHe TepeHipeK YHUIIN, OChl MapaIurMaHbIH
aybICYBIHA OKEIIETiH KETiCTIKTEPIi Ie, OHBIH KYHIENIKTi eMipre Oipkeiki eHyiHe keaepri O0oIaThIH KYPAETi KUBIHIBIKTapabl 1a
3epTTeliMi3. ABTOHOMUSIFA anapaThlH JKOJI IJI HABUTalUsl YIIIH CeHcopyiapAbl OipiKTipyre MaHbBI3Abl Ha3ap ayaapa OTBIPHII,
CEHCOPJIBIK TEXHOJIOTHSJIAP, YKACAH/(bl HHTEJUICKT JKOHE KOMMYHHUKAIMsUIapJarsl JKeTicTikrepai kaMmTuasl. [llony MammHaHbl
OKBITY/IaFbl, KOMIIBIOTEPIIIK KOPY JKOHE CEHCOPJIBIK TEXHOJOTHSIAPAaFhl HET13r JKETICTIKTEp/i KOpCeTe i, ojlap aBTOHOMIBI
JKYPri3y )KyHenepiH Heri3zeiii )koHe oJlap/bIH Ka3ipri MyMKIHAIKTEpi MEeH HIEKTeYJIepi Typabl TYCiHIK Oepeai. by monyabiH
CHHTE31 3epTTeylIiIep, IPaKTUKTEP JKOHE JKANIbI )KYPTIIBUIBIK apachblHIa aklapaTTaHJbIpbUIFaH MiKipTanacka »apaeMieci,
ABTOHOM/IBI JKYPTIi3yIiH Ka3ipri jkaii-KyHiH TyTac TyCiHyAl KaMTamachl3 eryre OarbiTTanraH. JKericTikrepre ae, KUbIHABIKTapFa
Jla JKapbIK TYCIpe OTBIPHIN, OYJI KYXKAaT aBTOHOMBI KOJIK JKYPri3yAiH OoNaliaFbl Typaibl KaJIFAChI j)KaTKaH AUCKYpPCKa YIIec
KOCaJIbl XKOHE OCHI TPAHC(HOPMALUSIBIK TEXHOJOTUSHBI KCHIHEH SHT13yre TOH KHBIHABIKTapIbl LICIIyre apHAJIFaH CTPAaTerHs-
Jappl A3ipiey Typajbl Xabapiaipl.

Hezizzi co30ep: agmorHomObl KoMK, 63iH-63i OACKapamuik KOIIK KYpanoapbl, HCAcaHObl UHMENLeKn, CeHCOpaap, mepew
OKbIMY.

O030p pacnpocTpaHEeHHBIX MPAKTHK U 327124 ABTOHOMHOT0 BOK/IE€HUSA

K. Canzos”, A. Monzarynosa
Satbayev University, Arvameoi, Kazaxcman
*Aemop ons koppecnondenyuu: Kirill.saidov.d@gmail.com

AnHoTanus. B mocnenHue rojpl TEXHOJOTHH aBTOHOMHOTO BOKICHUS MPUBJICKIN K ce0e 3HAUYUTEIbHOS BHUMaHUE, 00e-
1as npeodpasyroiee BO3ACHCTBIE HA TPAHCIIOPTHBIE cUCTeMbl. TpaHcmopTHas cepa nmperepreBaeT riy0oKyo TpaHchopma-
U0 C aKIICHTOM Ha JOCTIDKCHHE aBTOHOMHOCTH TPAHCHOPTHBIX CPEICTB, HAUYMHAS OT IEPEIOBBIX CHCTEM IIOMOIIH BOAUTEIIO
(ADAS) u 3akaHYMBas aMOMIIMO3HOMU €TI0 CO3TaHUS MMONHOCTHI0 aBTOHOMHBIX TPAHCIIOPTHBIX CPEICTB. B 3TOM cTaThe MBI
YIIyOUMCSl B CIIO)KHOCTH aBTOHOMHOTO BOXKIICHHS, HCCIIENYS KaK TOCTH)KEHUS, CITIOCOOCTBYIONINE ATOMY CIBUTY MapaIiTMbl,
TaK ¥ CJOXHBIC MMPOOJIEMBI, MPETATCTBYIONINE €ro IUIAaBHONH HHTETPAIM{ B IOBCEIHEBHYIO KH3HB. IIyTh K aBTOHOMHOCTH
MpeIIoIaraeT MPOPBIBEI B CEHCOPHBIX TEXHOJOTHIX, HCKYCCTBEHHOM WHTEJUICKTE W CPEICTBAX CBS3H, IPH 3TOM PEIIAOIIHN
ynop Jenaercs Ha 00beAMHEHNE JAaTYUKOB JIJIsl TOUHOW HaBHTAIIMU. B 0030pe OCBEIMIAIOTCS KITFOUEBBIE JOCTHKEHHS B 00IacTH
MAaIIMHHOTO 00YYEeHHSI, KOMITBIOTEPHOTO 3pEHUS U CEHCOPHBIX TEXHOJOTHH, JIOXKAIIUX B OCHOBE CUCTEM aBTOHOMHOTO BOXK/IE-
HUS, a TaKoKe TpejyiaraeTcs MOHUMaHre UX TEKYIIMX BO3MOXKHOCTEH U orpanmdeHuil. O0o0menne 3Toro 0030pa HaIpaBJIeHO
Ha TO, 9TOOBI 00ECTICUNTH 1IEJIOCTHOE TIOHWMAHUE TEKYIIETO COCTOSHUSI aBTOHOMHOTO BOXKIEHHS, CIIOCOOCTBYsI HH(POPMHPO-
BaHHBIM JUCKYCCHSAM CPEIU HUCCIeN0oBaTeNIeH, MPAKTUKOB M IMIMPOKOW 00MIeCTBEHHOCTH. [IpomBasi CBET Kak Ha JTOCTHIKEHUS,
TaK W Ha MPOoOJIeMbl, TOT JOKYMEHT BHOCHUT CBOH BKJIAJ] B MIPOIOJIKAIOIIHIACS TUCKYPC O OYIyIieM aBTOHOMHOTO BOXKJCHUS U
nmaeT HHGOPMAIIMIO IS Pa3paOOTKU CTPATETHHl IS PEIICHHS CIIOXKHOCTEH, MPHUCYIIUX JTOCTHKCHUIO ITHPOKOTO BHEIPCHHUS
9TOU MPeoOPa3yIOIIEH TEXHOIOTHH.
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