S SATBAYEV
UNIVERSITY

Computing & Engineering
Volume 1 (2023), Issue 1, 13-19

https://doi.org/10.51301/ce.2023.i1.03

Using machine learning algorithms for processing medical data

G. Mukazhanova!, Zh. Alibiyeva?*, A. Kassenkhan?, N. Mukazhanov?

YInnovative Eurasian University, Pavlodar, Kazakhstan
2Satbayev University, Almaty, Kazakhstan

*Corresponding author: zh.alibiyeva@satbayev.university

Abstract. The paper considers the comparative analyses of machine learning algorithms for dataset: cardio_train.csv from
kaggle.com (link: https://www.kaggle.com/sulianova/cardiovascular-disease-dataset). Moreover, using machine learning algo-
rithms there will be discovered the best accuracy algorithms for the cardio_train.csv. Considering procedures have done in
Python 3.0 programming language, which represents confusion matrix and classification report, in order to see precision score,
recall, fl-score, and support. Furthermore, in this paper you are able to see following classification models: KNN algorithm,
Logistic Regression, Decision Tree, Random Forest, Naive Bayes and SVM. As a result, it will be defined the superior accura-

cy for processing medical dataset.

Keywords: medical dataset, machine learning, algorithms, KNN algorithm, Logistic Regression, Decision Tree, Random

Forest, SVM, Naive Bayes.

1. Introduction

It is clear, that processing medical data plays significant
role in our century, especially in period of worldwide pan-
demic which has changed and affected to world health organ-
ization and whole economy of the countries. The mission of
this paper is to help and to analyze medical data via modern
technology such as machine learning and to process cardio-
vascular diseases via finding out methods and models in
order to atomize data and compare methods, search the best-
adapted models and method using Python programming
language and Machine learning algorithms. There is a good
medicine in Kazakhstan, although it needs several methods
in order to make it better. The purpose of the following work
is to improve processing medical data, especially cardiovas-
cular diseases, which is the top problem in Kazakhstan.

In this article, will be presented machine learning classi-
fication algorithms such as: KNN algorithm, Logistic Re-
gression, SVM, Decision Tree, Random Forest, Naive Bayes.
All algorithms and procedures have done in Jupyter Note-
book (Anaconda), Python 3.0 programming language. After
considering machine learning algorithms will provided com-
parative analysis in tables of all procedures.

2. Materials and methods

2.1. Overview of dataset

There are 3 types of input features: objective, examina-
tion and subjective.

Objective: factual information;

Examination: results of medical examination;

Subjective: information given by the patient.

Features correspond to 12 columns: age, height, weight,
gender, systolic blood pressure, diastolic blood pressure,
cholesterol, glucose, smoking, alcohol intake, physical ac-
tivity and presence or absence of cardiovascular disease.

© 2023. G. Mukazhanova, Zh. Alibiyeva, A. Kassenkhan, N. Mukazhanov
https://ce.journal.satbayev.university/. Published by Satbayev University

Below are the column details:

Age | Objective Feature | age | int (days)

Height | Objective Feature | height | int (cm) |

Weight | Objective Feature | weight | float (kg) |

Gender | Objective Feature | gender | categorical code |

Systolic blood pressure | Examination Feature | ap_hi | int |

Diastolic blood pressure | Examination Feature | ap_lo | int |

Cholesterol | Examination Feature | cholesterol | 1: nor-
mal, 2: above normal, 3: well above normal |

Glucose | Examination Feature | gluc | 1: normal, 2: above
normal, 3: well above normal |

Smoking | Subjective Feature | smoke | binary |

Alcohol intake | Subjective Feature | alco | binary |

Physical activity | Subjective Feature | active | binary |

Presence or absence of cardiovascular disease | Target
Variable | cardio | binary | All of the dataset values were
collected at the moment of medical examination.

All the following attributes will help to analyze and pro-
cess the best adapted method and models in order to achieve
in the article goal.

Cardiovascular disease (CVD) continue to be the most
pressing health problem most countries of the world, includ-
ing the Kazakhstan. According to the World Health Organi-
zation, every year in the world from cardiovascular disease
(CVD) dies more than 17 million people, including more
than 7 million from coronary heart disease (IHD) [1].

Predicting CVD risk is becoming increasingly more im-
portant in clinical decision making since their introduction at
the international level in the latest guidelines. At the same
time, predicting the risk of coronary artery disease at based
on the analysis of traditional risk factors is fraught with a
number of problems. In the FI, during observation for 26
years, a significant coincidence of groups of persons without
established ischemic heart disease and people who develop
coronary artery disease. By level traditional FRs, coincidence

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:/creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://ce.journal.satbayev.university/
http://creativecommons.org/licenses/by/4.0/
https://ce.journal.satbayev.university/index.php/journal/article/view/1247

G. Mukazhanova et al. (2023). Computing & Engineering, 1(1), 13-19

was noted the level of total cholesterol (3.9-7.8 mmol / I)
between the groups [2].

There was a significant overlap of groups of patients IHD
and healthy men according to the level of traditional RF (TC,
LDL cholesterol, smoking, AH, BMI) and significant differ-
ence in HDL cholesterol, TG and ratio LDL cholester-
ol / HDL cholesterol. The prospective NPHS2 study com-
pared the predictive ability of algorithms for cardiovascular
risk assessment by Framingham and Procam. Both of these
algorithms had a false negative result > 85%.

The low accuracy of predicting cardiovascular events has a
number of reasons. First, the assessment the total risk must be
adapted depending on national and regional features. Second-
ly, considering the design of the research scales included in the
development, in them often not considered significant for the
offensive cardiovascular event’s clinical conditions (type | and
Il diabetes mellitus, chronic kidney disease or very high levels
of certain risk factors). Third, the data that were used to com-
pile scales, were received 30-50 years ago and may not corre-
spond to modern realities. Fourthly, mathematical methods for
calculating risks also have errors and limitations of applicabil-
ity. This way we can speak with confidence about the problem
of insufficient accuracy of results calculating cardiovascular
risk based on generally accepted scales.

Machine learning provides good opportunities to solve this
problem and significantly improve accuracy in predicting
cardiovascular diseases and their complications in comparison
with the use of existing methods, due to the nonlinear relation-
ships of their fine tuning between cardiovascular risk factors
and the manifestation of diseases. Recently calculation of the
number of research and development in these areas.

In the Figure 1 is shown dataset attributes all columns and rows.

dataset = pd.read_csv('cardio_train.csv', ';')

dataset.sample(10)

id age gender height weight ap_hi ap_lo cholesterol gluc smoke alco active cardio

47702 68105 15955 2 173 850 130 80 1 1 0 1 1 0
42749 61085 21912 2 167 800 140 90 1 1 0 0 0 1

8773 12518 23248 1 160 640 120 80 1 1 0 0 1 0

6340 9025 18299 1 156 104.0 120 80 1 1 0 0 1 1
56707 80954 15300 2 160 620 140 90 1 1 0 0 1 1
69834 99739 19776 1 15 59.0 120 80 2 1 0 0 0 0
16906 24167 17272 2 170 310 150 90 2 2 0 0 1 1
18950 27061 21158 1 168 640 120 80 1 1 0 0 0 0
36449 52065 20302 1 168 950 180 80 1 1 0 0 1 1
28611 40910 23455 2 176 850 140 90 2 2 0 0 1 1

Figure 1. Dataset description in Python

After dataset has been read in Python there is a method da-
taset.nunique() to check how many unique values are there in
the each row. dataset.isna().sum() following method is used to
verify are there any nill or empty rows. If yes, then we need to
fill all null values by average sum of row and normalize the
dataset. Then there is prepared dataset for further procedures.

X = dataset.iloc[:, :-1].values

y = dataset.iloc[:, -1].values

Following code above is used to divide dataset into train
and test. Furthermore, for X has chosen all columns except
the last one, for y vice versa. It is important to separate them
because our target to find people from dataset who has cardi-

14

ovascular disease and doesn’t have. There is a reason why
we have 2 option only 1 and 0. 1 — yes, 0 —no.

There is used following piece of code to import
train_test_split for separating dataset into test and train:

from sklearn.model_selection import train_test_split

From Figure 2 you are able to visualize it more clearly.

from sklearn.model_selection import train_test_split‘
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state = 1,stratify =y)
from sklearn.neighbors import KNeighborsClassifier

Figure 2. Importing train test split

After all these steps our dataset is ready to be modified
and proceed.

2.2. Using machine learning algorithms for processing
medical data

Machine learning is a process used by companies to turn
raw data into useful information. By using software to look for
patterns in large batches of data, businesses can learn more
about their customers to develop more effective marketing
strategies, increase sales and decrease costs. Machine learning
depends on effective data collection, warehousing, and com-
puter processing [1].

Machine learning involves exploring and analyzing large
blocks of information to glean meaningful patterns and trends. It
can be used in a variety of ways, such as database marketing,
credit risk management, fraud detection, spam Email filtering,
or even to discern the sentiment or opinion of users [2].

The most popular algorithms of machine learning are rep-
resented in Figure 3.

. A

y K Nearest Neighbors)
{ Algorithm SVM Algorithm
1D3 Algorithm °

C4.5 Algorithm

Naive Bayes)
Algorithm

Statistical Procedure
Based Approach

Figure 3. Classification Methods

Machine learning algorithms are able to be whether super-
vised or unsupervised.

Supervised learning: Algorithms that need a ‘training’ set of
data to learn.

Unsupervised learning: Algorithms that don’t need any
training data to work properly.

Here are the main types of algorithm that is going to be used.

Classification: These algorithms put the existing data (or
past data) into various ‘classes’ (hence classification) based on
their attributes (properties) and use that classified data to make
predictions.

Accuracy = TP+TN/TP+FP+FN+TN

Precision = TP/TP+FP

Recall = TP/TP+FN

G. Mukazhanova et al. (2023). Computing & Engineering, 1(1), 13-19

F1 Score = 2*(Recall * Precision) / (Recall + Precision).

K Nearest Neighbor Algorithm. K-Nearest Neighbors, or
KNN for short, is one of the simplest machine learning algo-
rithms and is used in a wide array of institutions. KNN is a
non-parametric, lazy learning algorithm. When we say a
technique is non-parametric, it means that it does not make
any assumptions about the underlying data. In other words, it

X_train, X_test, y_train,

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(51)

y_test = train_test_split(X,y,

makes its selection based off of the proximity to other data
points regardless of what feature the numerical values repre-
sent. Being a lazy learning algorithm implies that there is
little to no training phase. Therefore, we can immediately
classify new data points as they present themselves [3].
Implementation in Python KNN algorithm. Let’s explore
our cardiovascular dataset in KNN algorithm in Figure 4.
test_size=0.2,

random_state = 1,stratify =y)

re is no big difference between 11th and 33th k neighbours only 57% is predicted

X_test[1:2]

array([[5.3647e+84,
l.6580e+82,
2.0ee0e+08,

1.9730e+24, 1.0008e+00,
1.0000e+82, 1.0000e+00,
1.e000e+808]])

knn.fit(X_train, y_train)

KNeighborsClassifier(algorithm="auto"',
metric_params=None,
weights="uniform")

y_preds = knn.predict(X_test)

for i,j in zip(y_test, y_preds):

print(‘'real: ', i, ' predicted: ',j)

1.47008e+02,
1.0080e+00, 0.0000e+00,

5.8e0Be+01,

leaf_size=38, metric="minkowski',
n_jobs=None,

n_neighbors=51, p=2,

Figure 4. KNN

The first step to import KNeighborsClassifier in order to
analyze dataset and find optimal accuracy for dataset. At the
beginning it was tried to use 11 and 33 neighbors. However,
an accuracy was not as it was expected. As a result, it has
been noticed that there is no big difference between 11th and
33th k neighbors only 57% is predicted.

precision recall fl-score support

Not cardio 9.59 8.59 0.59 7004
cardio 9.59 0.58 0.59 6996
accuracy 0.59 140080
macro avg 9.59 0.59 8.59 140080
weighted avg 8.59 9.59 8.59 14008

Figure 5. KNN, Confusion matrix and classification report

Figure 5 is shown accuracy score better predicted in the
nearest neighbors 51 but in 55 it is getting worse. In order to
predict better result, we need find the best option here. Be-
fore 51 it was tried all classifiers but accuracy was only be-
tween 56-57, the best result was shown only here, anyway 58
it is not tending to be a good prediction. As a result, you are
able to see here accuracy result is about 59% which is not
bad, but still need some good options to increase result.
Result: Accuracy of KNN is 59%.

Logistic Regression. Logistic regression is a classification
algorithm used to assign observations to a discrete set of
classes. Some of the examples of classification problems are
Email spam or not spam, Online transactions Fraud or not
Fraud, Tumor Malignant or Benign. Logistic regression
transforms its output using the logistic sigmoid function to
return a probability value [4].

15

Logistic regression defined as the «Sigmoid functiony» or
also known as the «logistic function» instead of a linear
function. Figure 6 is represented Sigmoid function, which
defines Logistic regression.

1
lte”

L0 P

Sigmoid Function o(z) =

0.0

z=Ywx +bias

Figure 6. Sigmoid function

Implementation of Logistic Regression algorithm in Py-
thon. To explore our dataset by logistic Regression algo-
rithm, there is been added method import LogisticRegres-
sion. Figure 7 is shown source code of importing methods
and clusters in Python. Accuracy of logistic regression classi-
fier on test set: 0.71(71%). This accuracy is better than KNN
which has shown only 57%.

In the next Figure 8 we able to see confusion matrix and
classifation reports.

The result of confusion matrix comparing KNN and Lo-
gistic Regression it is definitely better confusion matrix in
Logistic regression 5255+1749>2323+1749 in KNN we are
able to see following result in confusion matrix
4154+4082>2914+2850, as a result confusion matrix of Lo-
gistic Regression is found as the best. In Classification report

G. Mukazhanova et al. (2023). Computing & Engineering, 1(1), 13-19

of Logistic Regression there is precision 69%, recall 75%, fl1
score 72% higher than in KNN here following classifiers pre-

from sklearn.linear_model import LogisticRegression
from sklearn import metrics

logreg = LogisticRegression()
logreg.fit(X_train, y_train)

cision 59%, recall 59%, f1 score 59% constantly. Precision
better predict for 10% defense, recall 16%, f1 score 13%.

C:\Users\user\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver will be change

d to 'lbfgs' in ©.22. Specify a solver to silence this warning.

FutureWarning)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, 11_ratio=None, max_iter=160,
multi_class="'warn', n_jobs=None, penalty='l2",
random_state=None, solver='warn', to0l=0.0001, verbose=80,

warm_start=False)

y_pred = logreg.predict(X_test)

print('Accuracy of logistic regression classifier on test set: {:.2f}'.format(logreg.score(X_test, y_test)))

Accuracy of logistic regression classifier on test set: ©.71

Figure 7. Logistic regression

precision recall fl-score support

e 8.68 8.73 8.70 7004

1 e.71 0.66 0.68 6996

accuracy 8.69 14600
macro avg 8.69 08.69 8.69 14000
weighted avg 8.69 0.69 08.69 14000

Figure 8. Logistic Regression, Confusion matrix and classifi-
cation report

Let’s visualize True and Positive Rate False Negative
Rate as well in Figure 9.

from sklearn.metrics import roc_auc_score

from sklearn.metrics import roc_curve

logit_roc_auc = roc_auc_score(y_test, logreg.predict(X_test))

fpr, tpr, thresholds = roc_curve(y_test, logreg.predict_proba(X_test)[:,1])
plt.figure()

plt.plot(fpr, tpr, label='Logistic Regression (area = %@.2f)" % logit_roc_auc)
plt.plot([e, 1], [e, 11,'r--')

plt.xlim([e.e, 1.0])

plt.ylim([©.8, 1.85])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver operating characteristic')

plt.legend(loc="lower right")

plt.savefig('Log_ROC')

plt.show()

Receiver operating characteristic

True Positive Rate

e = Logistic Regression (area = 0.69)

0.0 0.2 04 06 08 10

Figure 9. True Positive Rate and False Negative Rate of Lo-
gistic Regression

To sum up, | would probably choose in my case logistic
regression, as a result it seems to make better prediction from
59% to 69%.

Result: Accuracy of Logistic Regression is 69%.

Support Vector Machine. The objective of the support
vector machine algorithm is to find a hyperplane in an N-
dimensional space (N — the number of features) that dis-
tinctly classifies the data points. To separate the two classes
of data points, there are many possible hyperplanes that

16

could be chosen. Our objective is to find a plane that has the
maximum margin, i.e. the maximum distance between data
points of both classes. Maximizing the margin distance pro-
vides some reinforcement so that future data points can be
classified with more confidence [5].

In SVM, we take the output of the linear function and if
that output is greater than 1, we identify it with one class and
if the output is -1, we identify is with another class. Since the
threshold values are changed to 1 and -1 in SVM, we obtain
this reinforcement range of values ([-1,1]) which acts as
margin. In Formula 1 there is Hinge loss function.

o(x y»(x)):{

Implementation in Python SVM algorithm. The earliest
step we need to start with, is to import SVM. This method is
used to call classifier SVC svclassifier = SVC ().

plt.scatter(X_train[:, 0], X_train[:, 4], c=y_train, cmap =
'spring’). Following code represents scatter plot that will
show visualization of data, which is shown in Figure 10.

0, fyxf(x)>1

1-y=*f(x), else @

In [98]:

Out[98]: <matplotlib.collections.PathCollection at ©x20594c93848>

2001 ®
175
150
125
100
75

50

25

0 20000 40000 60000 80000 100000

Figure 10. Scatter plot of dataset

For SVM is used 2 types of kernel sigmoid and rbf. Fur-
thermore, it has got 2 accuracy results, confusion matrix and
classifier report as well. Figure 11 is shown report of SVM
rbf classifier report.

M plt.scatter(X_train[:, @], X_train[:, 4], c=y_train, cmap = 'spring')

G. Mukazhanova et al. (2023). Computing & Engineering, 1(1), 13-19

precision recall fl-score support

° .61 ©.54 .57 7004

1 8.59 0.66 9.62 6996

accuracy 0.60 14000
macro avg ©.60 @.60 ©.60 l4e00
weighted avg 9.60 2.60 0.60 14000

Figure 11. SVM, rbf, Confusion matrix and classification re-
port

As a result, it is clear that accuracy of rbf kernel for SVM
is about 60% macro and weighted average the same 60%
which better than in KNN which was 59% but worse than
Logistic Regression which was 71%. Precision is 61% recall
seems worse only 54% and support there are 7004 for O tar-
get. For target 1 result in precision worse 59% but recall 66%
and f1-score 62%, support only 6996.

Now Figure 12 is presented Confusion matrix and classi-
fication report of SVM for sigmoid classifier. svclassifierl =
SVC(kernel='sigmoid") this following code is used to identify
result for sigmoid.

precision recall fl-score support

=] 0.51 8.58 @.51 7004

1 9.51 .51 .51 6996

accuracy e.51 14eee
macro avg 8.51 8.51 8.51 14000
weighted avg 0.51 ©.51 e.51 14000

Figure 12. SVM, sigmoid, Confusion matrix and classification
report

For cardiovascular dataset rbf classifier is better than
sigmoid accuracy in rbf 0.508 accuracy in sigmoid 0.5995
comparing confusion matrix (sigmoid) 3535 3469] [3419
3577] correct predictions 7112>6888 negative predictions
comparing confusion matrix (rbf) [3782 3222] [2385 4611]
correct predictions 8393>5607 negative predictions precision
51% in sigmoid, precision 61% in rbf recall no big difference
50% and 54% in rbf f1 51% f1 57% in svm kernel rbf.

Result: Accuracy of SVM kernel = rbf is 60%.

Naive Bayes. A Naive Bayes classifier is a probabilistic ma-
chine learning model that’s used for classification task. The crux
of the classifier is based on the Bayes theorem. In the following
formula 2 you are able to see Bayes theorem about Using Bayes
theorem, we can find the probability of A happening, given that
B has occurred. Here, B is the evidence and A is the hypothesis.
The assumption made here is that the predictors/features are
independent. That is presence of one particular feature does not
affect the other. Hence it is called naive [6].

P(BIAPA)

PE) @

P(A|B) =

Implementation in Python Naive Bayes algorithm. In this
Naive Bayes algorithms are used three types of classifiers,
such as Bernoulli Naive Bayes with following source code:

1. from sklearn.naive_bayes import BernoulliNB

2. from sklearn.model_selection import train_test_split

3. bnb = BernoulliNB(binarize=0.0)

4. After that has been used Multinomial Naive Bayes
with following source code:

5. from sklearn.naive_bayes import MultinomialNB

6. from sklearn.model_selection import train_test_split

7. mnb = MultinomialNB(alpha=0.01)

17

8. The last one Gaussian Naive Bayes with following
source code:

9. from sklearn.naive_bayes import GaussianNB

10. gnb = GaussianNB().

In Figure 12 is demonstrated accuracy 57% for Gaussian
Naive Bayes. Moreover, there is confusion matrix with not
bad result and recall with 95% in classification result which
the best comparing with others.

Accuracy: precision recall fl-score support
2] 0.54 8.95 0.69 7004
1 8.78 .19 0.38 6996
accuracy 8.57 l4e00
macro avg 9.66 .57 .49 14600
weighted avg 9.66 8.57 0.49 14000

Figure 13. Gaussian Naive Bayes, Confusion matrix and clas-
sification report

In Figure 14 is demonstrated Bernoulli Naive Bayes accura-
cy 52% with the same precision and fl1-score as well. It seems
Gaussian is better for the following dataset than Bernoulli.

Accuracy: precision recall fl-score support
] 9.51 9.82 0.63 7004
1 9.55 9.22 0.31 6996
accuracy 0.52 14000
macro avg 0.53 9.52 0.47 14000
weighted avg 9.53 0.52 0.47 14000

Figure 14. Bernoulli Naive Bayes, Confusion matrix and clas-
sification report

Decision Tree. Decision tree can be used to visually and
explicitly represent decisions and decision making. As the
name goes, it uses a tree-like model of decisions. Though a
commonly used tool in machine learning for deriving a strat-
egy to reach a particular goal, it’s also widely used in ma-
chine learning, which will be the main focus of this article.
Growing a tree involves deciding on which features to
choose and what conditions to use for splitting, along with
knowing when to stop. As a tree generally grows arbitrarily,
you will need to trim it down for it to look beautiful [7].

Implementation of Decision Tree algorithm in Python. To
implement DT in Python we need to import it via this code:

from sklearn.tree import DecisionTreeClassifier

In Figure 15 Accuracy result is shown as 64% which bet-
ter than KNN and SVM, Naive Bayes as well.

from sklearn.tree import export_graphviz
clf = DecisionTreeClassifier()

k1f = clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

y_pred

array([1, @, ©, ..., @, @, 1], dtype=int64)

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Accuracy: ©.641

Figure 15. DT accuracy

If we use DT entropy it is showed better result in Accura-
cy with 73% with following code:

clf = DecisionTreeClassifier
max_depth=3) in Figure 16.

(criterion="entropy",

G. Mukazhanova et al. (2023). Computing & Engineering, 1(1), 13-19

clf = DecisionTreeClassifier(criterion="entropy"”, max_depth=3)

clf = clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Accuracy: ©.7288571428571429

Figure 16. DT(entropy) accuracy

In Figure 17 below it is represented Decision Tree of our
dataset.

Result: Accuracy of Decision Tree is 73%.

Random Forest. Random forest, like its name implies,
consists of a large number of individual decision trees that
operate as an ensemble. Each individual tree in the random

graph.write_png(‘'cardio.png')
Image(graph.create_png())

forest spits out a class prediction and the class with the most
votes becomes our model’s prediction [7].

Implementation in Python Random Forest algorithm. As we
know it starts from importing classifier with following code:

from sklearn.ensemble import RandomForestRegressor

regressor RandomForestRegressor(n_estimators=20,
random_state=0)

regressor.fit(X_train, y_train)

y_pred = regressor.predict(X_test)

In the Random Forest Mean
0.3650785714285715

Mean Squared Error: 0.19626714285714283

Root Mean Squared Error: 0.4430204767921488.

Absolute Error:

ap_| p_his 129, 5
entropy = 1.0
samples = 56000
value = (28017, 27983]
_class=0

age = 198435
entropy = 0.902
samples = 32976
value = [22488, 10488]

class = 0

value = [7327, 6772]

samples = 19877
value -L'SQGI 4718)
class =0

olse

ap_his 1385

samplo = 23024
5=

value = [5529, 17495]

58 = 1

cholesterol < 2.5
entropy = 0.973
samples = 7471
value = [3011, 4460]

class =1

=0.9

entropy = o 784 entropy = 0.985 entropy = 0.978 entropy F
samples = samples = 848 samples = 11755 samples = 1344 samples = 6072
value = (14799 42301 value = [362, 486) value = [6902, 4853] value = [425, 919] value = [2727, 3345)
class =1

class =0 class = 1 class = 0

entropy = 0.993

class =1

Figure 17. Visualization of DT

Random Forest gives the same accuracy as Decision Tree
73% in Figure 18 it is shown.

from sklearn import metrics

print("Accuracy:" ,metrics.accuracy_score(y_test, y_pred))

Accuracy: 0.728

Figure 18. RF accuracy
Result: Accuracy of Random Forest is 73%.

3. Results and discussion

In the previous section, we implemented the main
algorithms of machine learning and tested them with a
medical dataset. As a result of testing, the accuracy
indicators of the algorithms turned out to be different. Their
accuracy indicators are shown in Table 1.

Table 1. Accuracy of ML algorithms

Ne | Machine learning algorithm Accuracy
1 KNeighborsClassifier 59%
2 Logistic Regression 69%
3 Support Vector Machine kernel=sigmoid = 51%
4 | Support Vector Machine kernel = rbf 60%
5 Gaussian Naive Bayes 57%
6 Bernoulli Naive Bayes 52%
7 Decision Tree 73%
8 Random Forest 73%

18

As shown in Table 1, the best accuracy algorithms are
Decision Tree and Random Forest, accuracy=73%. During
the test, two types of the Naive Bayes method were
considered and two different parameters of the Support
Vector Machine algorithm were tested. But their accuracy is
not higher than Decision Tree algorithm. Random Forest ia
an ensemble implementation of Decision Tree algorithm.

4. Conclusions

This paper consists of all main methods and algorithms of
Machine learning in order to correctly use a medical dataset
and get some essential information from useless information.
In this article were given following algorithms of Machine
learning such as KNN, SVM, DT, RF, Naive Bayes and
Logistic Regression. The results were quite surprising. Accu-
racy of all algorithms were not less than 50% and not higher
than 73%. The best result was demonstrated by Decision
Tree and Random Forest they have shown the same result
73% and Logistic Regression had slightly fewer percentages
as about 71%. The worst result has represented by Naive
Bayes only 57% whereas KNN had shown 59%.

To sum up, | would probably say that Decision Tree algo-
rithm and Random Forest made perfect job for dataset cardi-
ovascular_train.csv. | suppose, it happened because of
datatypes and our target which was Boolean 1 and 0.

References

[1] Embi, P.J. & Payne, P.R. (2009). Clinical research informatics:
challenges, opportunities and definition for an emerging do-

G. Mukazhanova et al. (2023). Computing & Engineering, 1(1), 13-19

main. Journal of the American Medical Informatics Associa- electronic medical record was feasible. Journal of clinical epi-
tion, 16(3), 316-327. https://doi.org/10.1197/jamia.M3005 demiology, 59(3), 254-264.
[2] Prokosch, H.U. & Ganslandt, T. (2009). Perspectives for medical https://doi.org/10.1016/j.jclinepi.2005.08.008
informatics. Reusing the electronic medical record for clinical re- [6] Williams, J.G., Cheung, W.Y., Cohen, D.R., Hutchings, H.A.,
search. Methods of information in medicine, 48(1), 38-44 Longo, M.F. & Russell, 1.T. (2003). Can randomised trials rely
[3] Wasserman, R.C. (2011). Electronic medical records (EMRS), on existing electronic data? A feasibility study to explore the
epidemiology, and epistemology: reflections on EMRs and fu- value of routine data in health technology assessment. Health
ture pediatric clinical research. Academic pediatrics, 11(4), 280— technology assessment, 7(26), iii-117.
287. https://doi.org/10.1016/j.acap.2011.02.007 https://doi.org/10.3310/hta7260
[4] Dean, B.B., Lam, J., Natoli, J.L., Butler, Q., Aguilar, D. & [7] Yamamoto, K., Matsumoto, S., Tada, H., Yanagihara, K,
Nordyke, R.J. (2009). Review: use of electronic medical records Teramukai, S., Takemura, T. & Fukushima, M. (2008). A data
for health outcomes research: a literature review. Medical care capture system for outcomes studies that integrates with electron-
research and review, 66(6), 611-638. ic health records: development and potential uses. Journal of
https://doi.org/10.1177/1077558709332440 medical systems, 32(5), 423-427.
[5] Tannen, R.L., Weiner, M.G., & Marcus, S.M. (2006). Simulation https://doi.org/10.1007/s10916-008-9147-7

of the Syst-Eur randomized control trial using a primary care

MeauumuHAJBIK JepeKTepai OH/1ey YIIiH MAIIUHAJBIK OKbITY
AJTOPUTMAEPIH Mangaany

I'. Myxkaxanosal, XK. Ann6uesa®’, A. Kacenxan?, H. MykaxaHoB?

Unnosayusnviy Eypasus Yuueepcumemi, Ilasnodap, Kazaxcman
2Sathayev University, Amvamor, Kazaxcman

*Koppecnonoenyus ywin asmop: zh.alibiyeva@satbayev.university

Anmarna. by makanaga machine learning anroputMiepitiH caibICThIPMAIIBl TANAAYbl KAPACTHIPBLIAIBI. AITOPUTMICPAI
CalbICTPY Kesleci JepeKTep OKHbIHBI ~ OoMbIHIIA Kkyprizimemi: — cardio_train.csv from kaggle.com (cinreme:
https://www.kaggle.com/sulianova/cardioascular-disease-dataset). ConbiMeH KaTap, OepeKTepii i3[aey airopurMiepi car-
dio_train.csv monmiri GoMbIHINIA €H YKAKChl alropuTMIepAi aHbikraiimel. Python 3.0 Oarmapnamanay TimiHAe OpBIHIAIFAH
npoleypanap/ibl TeKCepy, MaTpuIla XkoHe KikTey ecebi, MK KOpCeTKiliH, ecke Tycipym, fl ymaiibiH jkoHe KoJaay/ibl
Kepyre MyMKiHIIK Oepeni. COHBIMEH KaTap, OCHI Makajana Kejeci KiaccH)HUKauusuIbIK Moaenpaepai kepyre 6omamsr: KNN
QJITOPUTMI, JIOTHCTHKAJIBIK perpeccus, memrim aramsl, Random Forest, Naive Bayes xone SVM. HoTmxkecinae MeIUIIUHATBIK
JIEPEKTEeP/Ii OHACYIIH SH)KOFaphl IO aHBIKTAIA b

Hezizzi co30ep: meduyunanvix manimemmep dazacwl, depexmep dicunay, arcopummoep, KNN aneopummi, 102ucmukanviy
peepeccus, wewim agawnvl, Random Forest, SVM, Naive Bayes.

Hcnonb3oBanue aJiropuTMOB MAIIMHHOTO 00y4YeHHS JJ1s1 00padoTKu
MeIMIUHCKHUX TAHHBIX

I'. Myxkaxanosa®, XK. Anubuena®’, A. Kacenxan?, H. MykaxaHoB?

Unnosayuonnoiii Eepasuiickuii Yruueepcumem, Ilasnodap, Kasaxcman
2Sathayev University, Amvameot, Kazaxcman

*Aemop ons koppecnondenyuu: zh.alibiyeva@satbayev.university

AunHoTamusi. B crathe paccMaTpuBaeTCsi CpaBHUTEIBHBIN aHamm3 anroputMoB Machine learning msst HaGopa maHHBIX: Car-
dio_train.csv ot kaggle.com. (cceuka: https://www.kaggle.com/sulianova/cardiovascular-disease-dataset). Bonee Toro, ¢ mo-
Moo anroputMoB machine learning GyayT oGHapyKeHbI alTOPUTMBI HAMJIy4IIeld TOYHOCTH st cardio_train.csv. Paccmar-
puBaeTcs mporeaypa, paspaboTaHHas Ha si3bIke mporpammupoBanus Python 3.0, kotopas mpezacrasiser coboit confusion ma-
triX u oTueT 0 KIACCH(UKAIINH, MO3BOJSIET YBUIETH OICHKY TOYHOCTH, OT3BIB, oKy fl u mommepikky. Kpome toro, B 310
CTaThe BBl MOXETE YBHJETh Cieayromue Mozenn kinaccupukanuu: anroputM KNN, moructudeckast perpeccus, JepeBo
peutenuii, Random Forest, nauBHsbIil GaiiecoBckuii Mmetox 1 SVM. B pesynbrate OyaeT ompeseneHa BbiCOYAHIIas TOYHOCTD
00paboTKN MEAMITMHCKUX JAHHBIX.

Knrwouesvie cnosa: nabop meouyunckux 0auHulx, coop dannvix, areopummst, KNN ancopumm, rosucmuueckas pespeccus,
Opeso peutenuii, Random Forest, SVM, naue batiecosckuii memoo.

Received: 13 December 2022
Accepted: 16 March 2023
Available online: 31 March 2023
19

https://doi.org/10.1197/jamia.M3005
https://doi.org/10.1016/j.acap.2011.02.007
https://doi.org/10.1177/1077558709332440
https://doi.org/10.1016/j.jclinepi.2005.08.008
https://doi.org/10.3310/hta7260
https://doi.org/10.1007/s10916-008-9147-7

